Expression of the recombinant coat protein of *Potato virus X* in *Escherichia coli*

Parissa Hassan Sheikhi
Ph.D student, Department of Plant Pathology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran. hassansheikhi2013@gmail.com

Hossain Massumi
* Professor, Department of Plant Pathology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran. Tel: +989131406300, Email: masoomi@uk.ac.ir

Jafar Zolala
Assistant Professor, Department of Plant Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran. j.zolala@uk.ac.ir

Jahangir Heydarnejad
Professor, Department of Plant Pathology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran. jheydarnejad@yahoo.com

Akbar Hosseinipour
Associate professor, Department of Plant Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran. hosseinipour@uk.ac.ir

Mohammad Maddahian
Ph.D. in Plant Pathology, Department of Plant Pathology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran. Email: maddahian91@gmail.com

Abstract

Objective

Potato virus X (PVX) is a member of the genus *Potexvirus* in the family *Alfapoviridae*. This virus is one of the most common and widespread viruses infecting potato worldwide. Due to the wide distribution and economic damage of the virus in Iran, identification and detection of the virus is necessary using non-expensive methods. Production of polyclonal
antibody through molecular approaches can be a useful method for detection of virus in the nature.

Materials and methods
In this research, an infected potato sample was collected from Zarand (Kerman province) and its PVX infection was confirmed by ELISA test. This sample was inoculated on test plant and the coat protein (CP) gene of this isolate was amplified in RT-PCR test with specific primers comprising BglII and NcoI restriction enzymes. Amplified product was cloned into expression prokaryotic vector (pQE60 plasmid), followed by transformation of the E. coli strain M15 competent cells.

Results
Subsequent to induction of CP expression, total protein was extracted and run onto 12.5% SDS-PAGE. An approximate 24 kDa band was observed on the gel corresponded to the PVX coat protein. Furthermore, expression of the PVX CP was confirmed by dot blot technique.

Conclusions
In this study, a recombinant antigen suitable for the detection of potato X virus was prepared which was well identified by antiserum produced by injection of complete virus particles into rabbits in dot blot analysis. The production of monoclonal antibodies by recombinant viral antigen will be an important step in accelerating and facilitating the serological identification process of plants infected with this virus.

Key worlds: Viral Coat Protein, E. coli, Recombinant Protein Expression, Potato virus X,

DOI: 10.22103/jab.2019.14027.1131
Received: July 18, 2019; Accepted: October 8, 2019
© Faculty of Agriculture and Technology Institute of Plant Production, Shahid Bahonar University of Kerman-Iranian Biotechnology Society

Agricultural Biotechnology Journal; Printing ISSN: 2228-6705, Electronic ISSN: 2228-6500
پیام پرتوئین بوتهنشی نوترکیب ویروس X سبب زمینی در باکتری Escherichia coli

پریسا حسن شهری
دانشجوی دکتری بیماریشناسی گیاهی، بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهید بهشتی بانهر کرمان، hassansheikhi2013@gmail.com

حسین معصومی
نویسنده مسئول: استاد بیماری‌شناسی گیاهی، بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهید بهشتی بانهر کرمان، masoomi@uk.ac.ir

جعفر ذوالفعلی
استادیار بیوتکنولوژی کشاورزی، بخش بیوتکنولوژی، دانشکده کشاورزی، دانشگاه شهید بهشتی بانهر کرمان، j.zolala@uk.ac.ir

جهانگیر حیدرزناد
استاد بیماری‌شناسی گیاهی، بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهید بهشتی بانهر کرمان، jheydarnejad@yahoo.com

اکبر حسینی بور
دانشیار بیماری‌شناسی گیاهی، بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهید بهشتی بانهر کرمان، hosseini@uk.ac.ir

محمد مداحیان
دکتری بیماری‌شناسی گیاهی، بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهید بهشتی بانهر کرمان، maddahian91@gmail.com

تاریخ دریافت: 27/04/1398، تاریخ پذیرش: 16/07/1398

Agricultural Biotechnology Journal; Printing ISSN: 2228-6705, Electronic ISSN: 2228-6500
چکیده

ایجاد ویروس X سبب زمینی (PVX) از خانواده Potexvirus و گروه Alphaflexiviridae ترین ویروس‌های آلودگی کندنده سبب زمینی در چهارهای می‌باشد. به دلیل کسترش و خسائر اقتصادی این ویروس در ایران، شناسایی و در زمان استفاده از روش‌های با روش‌های سری‌فرزوری می‌باشد. تولید آنتی‌بادی چندهمسانه‌ای با استفاده از فناوری دی ای نوترکیب، یک راهکار می‌باشد که تسهیل شناسایی ویروس در طبیعت می‌باشد.

مواد و روش‌ها

1. کرمان جمع‌آوری و آلودگی آن نسبت به ویروس مذکور توسط آزمون DAS-ELISA نتیجه داد. جدایی مذکور جهت تکثیر، بر RT-PCR مایع‌زینه گردید. پس از استخراج آن از گیاه آزمون، با استفاده از واکنش و آگازکره‌های اختصاصی حاوی ژنограм برای آزمایش بررسی، تولید پروتئین پوششی ویروس تکیک و در ناقل پیوند پروکاردیون (pQE60) همان‌ساماره گردید. پلاستیدی نوترکیب، به باکتری Escherichia coli می‌زد. منفلوش شد.

نتایج: پس از تهیه یک بیان پروتئین مورد نظر استخراج و تکثیری با SDS-PAGE قرار گرفت. نتایج حاصل بیان آن این است که وزن مولکولی باند بازرس در آزمون SD5-PAGE با وزن مولکولی پروتئین پوششی (24KDa) مطابقت دارد. همچنین بیان پروتئین پوششی ویروس در نکنیک دلت بلات تایید گردید.

نتیجه گیری‌های مهم: از این تحقیق، یک آنتی‌ژن نوترکیب مناسب جهت تخم‌ICLE و بورس X سبب زمینی پیش‌گردید که به‌خوبی توسط آنتی‌زرم تولید شده از طریق تریک پیکره‌های کامل ویروس به خرگوش‌های آزمون داد به‌صورت مرحله‌ای تولید آنتی‌بادی چندهمسانه‌ای با استفاده از آنتی‌ژن ویروسی نوترکیب، گامی موتور به زمینه تسریع و تسهیل رفتار دندان‌سانی سرولیزیکی نمونه‌های آلودگی به این ویروس مهم می‌گردد.

واژه‌های کلیدی: پاکتری E. coli، بیان پروتئین نوترکیب، پروتئین پوششی ویروس و بورس X سبب زمینی

مقدمه

1 Potato virus X, PVX
سایر بوتی ویروس‌ها از قبیل ویروس Y سبب زمینی، ویروس جنگله چیتوتون و تاکید معمولاً به طریق مکانیکی منتقل می‌شوند. با این حال انتقال آن از طریق قارچ Tettigonia viridissima و Melanospora differentialis و دو گونه ملخ Synchytrium endobioticum و برخی از گونه‌های سنس (Koening & Lesemann 1989) نیز گزارش شده‌است.

Koening & Lesemann 1989 این ویروس به آسانی از طریق پیوند و گذای نیز منتقل می‌شود. جنس Alphaflexiviridae متعلق به خانواده است، و بیش از ۱۳ نام‌آموخته خمش‌پذیر به طول ۴۷۰ تا ۴۹۵ نانومتر و قطر ۳۷ تا ۷۳ نانومتر می‌باشند که در اثر تقارن ماری‌بیچی بوده و طول هر ماری‌بیچی حدود ۳۳ تا ۳۷ نانومتر است. (Adams et al. 2005). وبرابر ها حاوی یک مولکول خلاصی تک رشته‌ای مثبت با حدود ۵ کیلو بار می‌باشد که حدود ۶ درصد وزن وبرابر را تشکیل می‌دهد.
(Feigelstock et al. 1995) بوده و به استحالت (polyA)، پیوند که شش پنجم قاب بزرگ خوانندی ۴ در PVX ندارد یک پیکره‌های رشته‌ای خمش‌پذیر به طول ۵۲۵ تا ۵۳۲ کیلو بار، (NB) که شامل (polyA) و در انتهاه ۳ می‌باشد. (Yu et al. 2008). پروتئین پوششی بر روی عوامل مختلف از قبیل قابل ویروس با گیاه، علائم ایجاد شده در گیاه می‌تواند در حالت گل‌نکده، از ناحیه پاک‌دار، تاکید ویریوسکوپی و در انتهاه یکی از این زننگ‌ها واکنش فیتوفیتوکسیس گیاه را تحریک نمی‌کند. اولین در ارقام حاوی نرخ در تقابل با هیچ یک از این زننگ‌ها واکنش فیتوفیتوکسیس گیاه را تحریک نمی‌کند. تنها آموده خالص پروتئین یا ویروس یا جهت تهیه آموده‌ای دیگر با خلوص بالا، به منظور مطالعات اپیدمیولوژیک و یا مطالعه و عملکرد زننگ‌های مربوطه، حائز اهمیت می‌باشد. اجرای آن از راه آن در ویروس‌های مختلف سایر شده برای مطالعات روزمره کافی است، اما به دلیل مشکل بودن خالص سازی پیکره‌های ویروس و همراه بودن ذرات گیاهی با آنها، پروتئین‌های

1
2 Potato virus Y, PVY
3 Tobacco etch virus
4 Open reading frame, ORF
5 Ribonucleic acid, DNA
6 Thermal inactivation point

Agricultural Biotechnology Journal; Printing ISSN: 2228-6705, Electronic ISSN: 2228-6500
ب‌دنبال اقدام اغلب از درجه‌های برخوردار نیستند. از روش‌های جهت تهیه آنتی بادجی از درجه خلوص بالایی استفاده شده‌است. در مقابل، روش‌های پروتئین‌پذیری به صورت نوترکیب، به دلیل خلوص بالایی پروتئین‌های استخراج شده و امکان تولید آنتی‌بادجی در مقابل افراد کارایی بالاتری می‌باشد. به همین دلیل امروزه از روش‌های انتر پروتئین‌پذیری به سرعت در حال خروج است در سال‌های گذشته با کمکی استفاده می‌گردد (Shams-bakhsh et al. 2001). در مقابل، روش‌های تولید آنتی‌بادجی با کمک فیوز معمولاً در مزرعه سبیب زمینی کشور، این تحقیق با هدف تولید پروتئین‌پذیری بسیار بالایی در خالصیت بود. در مطالعات انجام شده، ابعاد بیش از ۵۰٪ کمکی پروتئین‌پذیری در یک ترکیب با دستگاه PVX در تولید آنتی‌بادجی همکاری کرده‌اند (Abouzid et al. 2002). در صورت اینکه پروتئین‌پذیری در مزارع سبیب زمینی کشاورزی با دستگاه PVX استفاده شود با کمک فیوز، از دلایل اصلی، امکان تولید آنتی‌بادجی در مقایسه با دستگاه‌های دیگر، کاملاً حاوی قابلیت‌های بالاتری می‌باشد.

مواد و روش‌ها

مواد گیاهی آلوه به PVX نمونه‌های مشکوک آلوه به PVX از مزرعه کشت سبیب زمینی در زند، استان کرمان جمع‌آوری گردیده و پس از انتقال به آزمایشگاه تهیه شده‌اند و به ویژه کمک کردن به پروتئین‌پذیری و توزیع بیش از ۷۴٪ pH= برا باز سازی کلامارک و آدامز (1977) ارزیابی شدند با استفاده از بافت فسفات و نسبت حجمی/ وزنی آزور ۱۱ از بارک هر یک از نمونه‌های آلوه به ویروس X سبیب زمینی عصاره گیری به عمل آمده به منظور حفظ و افزایش غلظت نمونه ویروسی و عصاره گیاهان آلوه با استفاده از پودر کاربنات در نسبت مکانیکی ماکزیمی شدن (Massumi et al. 2014) گردید.

جداسازی زن رمز کننده پروتئین پوششی و پروتئین X از پوست بینیانی از گیاهان تونتون High Pure Viral Nucleic Acid Kit (Roche, Germany, Cat. No: 11858874001) بر اساس دستورالعمل شرکت سازنده، استخراج شد. برای تکثیر ۷۴۱ نوکلئوتیدی در ردیف ۱۳۱۱۹۱ بارز دستورالعمل نمونه‌های آلوه به ویروس PVX کننده پروتئین پوششی دو آگازگر با استفاده از نرم‌افزار Fast-PCR گردید. برای این منظور از ترکیبی نوکلئوتیدی زن پوست بینیانی این ویروس آزمایش گردید که این آگازگرها به همراه ترکیبی نوکلئوتیدی آنها بانش‌ده است. سنتز رشته‌های مکمل مورد استفاده از کیت DNA Expand High ۱امی

۷ Double antibody sandwich-enzyme linked immunosorbant assay, DAS-ELISA
۸ Complementary DNA

Agricultural Biotechnology Journal; Printing ISSN: 2228-6705, Electronic ISSN: 2228-6500
Table 1. The primer sequences used to amplify CP gene of Potato virus X

<table>
<thead>
<tr>
<th>Primer</th>
<th>Size</th>
<th>Sequence (3'-5')</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVXF6</td>
<td>31</td>
<td>GCA’CCATGGCCACAGGTTCACTACTTCAAC</td>
</tr>
<tr>
<td>PVXR5</td>
<td>30</td>
<td>GCAAGATCTTTGCTGGAGGGTAAACACG</td>
</tr>
</tbody>
</table>

*Underline: Target sites for restriction endonucleases *Nco*I and *Bgl*II.

Agricultural Biotechnology Journal; Printing ISSN: 2228-6705, Electronic ISSN: 2228-6500
القای بیان پروتئین نوترکیب در باکتری E. coli

جوئی لتعین ترادرد گردد سپس با استفاده از محلول های کیت به باکتری M15 سویه E. coli به مولکول بیان زن‌های مورد نظر انتقال داده شد. به منظور تشخیص PCR کلیه‌های باکتری‌ای‌ها پلاسماید نوترکیب از آزمون M15 و هضم انزیم ذکر شده در بالا استفاده گردید.

جشت الفاء بیان توسط pQE-PVX چه البه باکتری E. coli آزمون تا دو دور در محلول حاوی تیکت Ins T/A Clone ™ PCR Product Fermentas، Lithuania از تکثیر در باکتری E. coli مواد حاوی میکرو مولار IPTG بطور مصرف.

پس از آن کل استعداد باکتری جهت بیان پروتئین ها مورد نظر در محلول حاوی تیکت میلی مولار شدی فيک سنجش اکووانتر در دو مدت 37 درجه صحت دارد.

به منظور تشخیص کلیه‌های باکتری حاوی پلاسماید نوترکیب، از آزمون PCR در مدت 15 دهه در دمای 37 درجه صحت دارد.

به منظور انتقال این جهت انتقال در لیوریک با استفاده از Page Ruler Prestained Protein Ladder (Thermo Scientific، USA) استفاده گردید. آشکارساز پروتئین‌ها در ژل SDS-PAGE با استفاده از محلول رنگ‌آمیزی آبی کوماسی صورت گرفت (فرنیسی).

از اموزن دات بلانس در این آزمون جهت تشخیص ایمونولوژیکی CP از آنتی بادی هایا ی بلی گذرنان نهی تکه شده از از اکووانتر شد. جهت انتقال این آزمون، نمونه برداری ها قبل از القای بیان و 8 ساعت بعد از انجام DMSZ شد. لیکن گذاری نمونه‌ها به مسیران 100mg/ml (100 میکرو‌لیتر) بر که کاغذ و نیترولیزهای یا از چا در بافر انتقال غوطه و به مدت 7 دقیقه در خشک شده بود انتقال گرفت، پس از خشک شدن که ها، غشا نیترولیزهای بافنا TBS-T در بافر انتی بادی ترمیشکی با دو دور 30 و 30 دقیقه در دمای 4 درجه صحت دارد. سپس از یک نشانه ترمیشکی یا بافنا IgG-AP، 1/1500 غوطه و گردد در نهایت این غشا در 20 میکرو‌لیتر بافنا غوطه و گردد و به مدت 20 دقیقه در اکووانتر در دمای 30 درجه صحت دارد.

10 Isopropyl-beta-thio galactopyranoside

Agricultural Biotechnology Journal; Printing ISSN: 2228-6705, Electronic ISSN: 2228-6500
نتایج

جدا سازی و ویروس از گیاهان سیب زمینی آلوده و سپس نمونه برداری از مزارع کشت سیب زمینی در منطقه لاله زار کرمان و انجام آزمون DAS-ELISA از میان نمونه‌های جمع‌آوری شده یک نمونه که پیشترین میزان جذب در آلایندا نشان داد جهت ماشینی بر روی گیاه توتون رقم N. glutinosa و مطالعه واکنش‌های گردید. و اکتش زنگیرهای بیلی‌واره: الکتروفورز محصول واکنش زنگیره‌ای پلیمراز به روش انتخابی در PVX5/PVXF6 با استفاده از آغازگرهای PVXR5/PVXF6 منجر به تشکیل یک قطعه 681 جفت باری برای ژن CP در زل اکتازی 1 درصد گردید که از لحاظ اندازه ماده 681 جفت باری در جدول اندام مورد انتظار می‌باشد (شکل ۱).

شکل۱: الکتروفورز محصول PCR مربوط به ژن پروتئین پوششی (CP) سیب زمینی ایرانی (پدیده) با استفاده از آغازگرهای PVX5/PVXF6/ PVXR5: نشانگر اندازه DNA: نشانگر اندازه PCR: نشانگر اندازه 681 جفت باری تحکیم شده مربوط به ژن پروتئین پوششی ویروس ویروس

Figure 1. Electrophoresis of the RT-PCR products related to coat protein gene of Iranian PVX isolates using specific primers of PVXF6/ PVXR5: M, 1-kb DNA ladder Thermo Scientific (Cat. No: SM0311) 1, amplified 681 bp products of the coat protein of PVX

NcoI و BgII همسانه سازی: همسانه سازی در ناقل بینایی pQE60-PVX و pQE60-PVX تایید گردید. پس از انگاج واکنش هنفسی، مربوط به ژن CP با اندازه 681 جفت باری در ناقل نوترکیب pQE60-PVX با اندازه 3400 جفت باری باقی ماند (شکل ۲).

11 Reverse transcription-polymerase chain reaction, RT-PCR
تعیین ترادف زن پروتئین پوششی PVX

کشور کره جنوبی ارسال گردید. پس از تعیین توالی قطعه درج شده، مقایسه توالی نوکلئوتیدی به دست آمده با توالی نوکلئوتیدی موجود در بانک زن توسط پرنامه Blast صحت ترادف مورد نظر را اثبات نمود (رس شمار بانک زن: 2.2). سپس بیان زن پروتئین پوششی PVX در میزان (M15) (KF575175) با استفاده از تکنیک SDS-PAGE و در کلروفورز پروتئین‌ها قطعاتی با وزن مولکولی حدود 24 کیلو دالتون برای پروتئین پوششی مشاهده گردید.

بر اساس نرم افزای آنالیز ExPASy وزن مولکولی پروتئین پوششی PVX 24 کیلو دالتون تعیین گردید که با وزن مولکولی بالغ مشاهده شده در آزمون SDS-PAGE نیز مطابقت داشت.

شکل 2. استخراج پلاسمید pQE60-PVX از باکتری E. coli و بررسی آن توسط انزیم های BglII و NcoI. (Cat. No: SM0311) Thermo Scientific M: دانه اندوز 1 کیلو بازی شرکت

1: قطعه 681 جفت بازی زن پروتئین پوششی CP و قطعه 3431 جفت بازی پلاسمید 60 حاصل از هضم انزیمی

شکل 3. استخراج پروتئین نوترکیب هدف در آزمون دات بالاتانه. بعد از رنگ آمیزی غشا نتروسلاماری در آزمون ذات بالاتانه رنگ زرد ناشی از واکنش آنتی بادی احتمالی پروتئین پوششی و پروس پروتئین نوترکیب هدف در نمونه پروتئین PVX با استخراج شده از باکتری E. coli pQE60-PVX استخراج شده از باکتری E. coli.

Figure 2. Extraction of pQE60-PVX plasmid from E. coli and digestion it by restriction enzymes BglII and NcoI. M: DNA ladder 1kb the company of Thermo Scientific (Cat. No: SM0311), 1: fragment 681 bp of the coat protein and fragment 3431 bp related to pQE60 plasmid from diges
توسعه واضح رنگ زرد مورد انتظار در نمونه‌های پروتئین استخراج شده در زمان‌های مختلف پس از آفتاب بیان زن در باکتری نوتروکریم موجب بیان موقعیت پروتئین بوتشری نوتروکریم و ویروس PVX و نشان‌یابی آن توسط آنتی‌بادی اختصاصی بود (شکل ۴).

شکل ۳. الکتروروفورز نمونه‌های پروتئین استخراج شده از باکتری E. coli نوتروکریم حامل پلاسمید بیانی M۱۵). (PageRuler™, M۱۵ پی-کد نمونه شاهد (۰,۶۶۳۰۰۰ مولکولی پروتئین ولنتراپورت مورد نظر در باکتری حاوی بلا سمید نوتروکریم pQE-PVX پروتئین بوتشری و ویروس تولید شده تو سطح سیستم بروکاریونی دارای وزن ۲۴/۹ کیلو دالتون می‌باشد.

فیگور ۳. الکتروفورز ترکیبات پروتئینی استخراج شده از باکتری E. coli می‌باشد که حاوی ژن تریگر اکتیویت سیستم اکتیوراکریونی می‌باشد. وزن پروتئین‌ها در کیلو دالتون ۲۴/۹ می‌باشد.

یکی از متن‌سازی‌های سیستم‌های میزبان برای بیان سطح بالایی پروتئین‌های نوتروکریم است، E. coli که بیان اکتیویت سیستم‌های میزبان و سطح فعالیت پروتئین‌ها را بهبود بخشیده است. استفاده از این باکتری به دلیل هزینه محدودی کست، سرعت بالایی رشد، امکان کنترل بیان زن‌های هدف و سهولت افزایش حجم تولید بسیار معیون است (Schwarz et al. 1978). علاوه بر این، امتیازات از نژادهای جهش‌پذیره (E. coli) تولید می‌شود که می‌تواند بیان پروتئین‌های نوتروکریم را به‌طور بیشتری پیش بیانی شود. به‌عنوان مثال، استفاده از نژادهای میزبان با جهش‌هایی در زن‌های پرونده

Agricultural Biotechnology Journal; Printing ISSN: 2228-6705, Electronic ISSN: 2228-6500

زمینه بیونکولولوژی کشاورزی (دوره 11، شماره 4، زمستان 1398)
شکل ۴ نتایج حاصل از آزمون دات برای شناسایی پروتئین پوششی نوترکیب ویروس PVX در نمونه پوستی یا پوستی PVX از باکتری E. coli (زمان صفر): عدم حضور پروتئین نوترکیب مورد نظر قبل از القای بیان زن پروتئین پوششی ویروس PVX در باکتری نوترکیب، د. ۴، ۶ و ۸۰ ساعت نشان می‌دهد که پروتئین نوترکیب مورد نظر وجود و واکنش آن با انتی بادی اختصاصی باید نっています.

Figure 4. Dot-blot test for identification of recombinant coat protein of PVX in protein samples isolated from recombinant E. coli harboring pQE60-PVX. t۰: the target protein is absent before induction of gene expression in recombinant bacterium. t۲, t۴, t۶ and t۸: The green color showing the presence and interaction of the target protein with PVX-CP specific antibody in protein samples isolated from recombinant bacterium 2, 4, 6 and 8 hours after induction of gene expression, respectively.

جناچه‌های پروتئین پوششی ویروس گیاهی به عنوان یک پروتئین خارجی از محلولیت مناسبی در pH سنتوتیلا سمی باکتری بروکسیرد ناشی، بخش مهمی از مولکول‌های پروتئین نوترکیب تولید شده بصورت توده‌های نامحلول با یل‌های دی سولفیدی فراوان خواهد شد. به نام inclusion body (Fischer 1993; Baneyx, 1999; Amersham 2000) به دست پردازیده می‌شود. اغلب تحقیقات مشابه در زمانهای تولید آنی باید برای پروتئین‌های برای خلاص سازی آسان پروتئین نوترکیب هدف از طریق کروماتوگرافی تکمیلی در برازش رضایت سازی باید در کرسته‌های (Ni۲⁺) استفاده کرده‌اند. ترکیب بین ایده‌های شیمی‌دان‌ها به‌طور جهانی انتخاب شده بین انتخاب N بروکسیرد نوترکیب از پروتئین‌های اولیه با پروتئین‌های دسته‌بندی شده برای درستی سی-مدیر سازی برای خلاص سازی پر دستگاه‌های Qia gen (Qiagen 2003).
یانگر آن است که استفاده از تکنولوژی DNA نوترکیب برای تشخیص ویروس‌های گیاهی موجب رفع مشکل عدم خلوص نمونه‌های ویروسی در هنگام تزریق به منظور تشخیص به جمله می‌توان از این روش‌ها برای گونه‌ها و باید از آن‌ها بوده باشد.

Ling et al. 2000; Abdel-Salam et al. 2004, 2005; Beuve et al. 2007; Fajardo et al. 2007; Khan et al. 2012، این روش برای تشخیص و یا کشف گونه‌ها و ویروس‌های نادری که در اکثر این روش‌ها مورد استفاده قرار گرفته‌اند.

با توجه به همبستگی سروپولیکی بین بعضی از ویروس‌های خانواده Potyviridae سپید زمینی و ویروس Y همچنین ویروس A سپید زمینی 15 آنتی سرم تهیه شده از طریق تزریق بکره‌های ویروس سالم و ردیده همچنین خرکوش قادر به تشخیص گونه‌ها و ویروس‌های استفاده از طریق PVS در باکتری E. coli لیست که بیان زن پروتئین پوشنی PVS در بالای، خالص سازی و تولید آنتی‌بادی دای الکل برای این ویروس سپید شده که آنتی‌بادی تولید شده به صورت اختصاصی چند- تشخیص چند‌های استفاده شود. زمانی که آنتی‌بادی تولید کرد DAS-ELISA استفاده گردیده است، از آنتی‌بادی سرم زمینی آلوده به PVS از سر برکار بردن آنتی‌بادی تولید برای مشکلاتی جهت تشخیص. Abdel-Salam et al. 2014، برخی از محققان در استفاده از PVS از DAS-ELISA آنتی‌بادی و ویروس محل مواجهه‌ای (2008) DAS-ELISA - 17 PVS جهت تشخیص. Cerovska et al. 2010) جهت تشخیص ویروس با استفاده از آنتی‌بادی تولید شده از طریق تزریق بکره‌های ویروس سالم و در این روش‌ها، ویروس شده از این روش‌ها مورد استفاده قرار گرفته. کامی‌موز در دنیا، تکنولوژی مبتنی بر پروتئین پوشنی PVS، آنتی‌بادی ویروسی از پارک‌ها و تولید آنتی‌بادی اختصاصی آن از طریق تزریق به خرکوش ادامه خواهد یافت.

14 Recombinant DNA
15 Potato virus A, PVA
16 Dot blotting immune binding assay
17 Indirect Plate Trapped Antigen-ELISA

Agricultural Biotechnology Journal; Printing ISSN: 2228-6705, Electronic ISSN: 2228-6500
References

Agricultural Biotechnology Journal; Printing ISSN: 2228-6705, Electronic ISSN: 2228-6500