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Abstract 

Objectives 

In the realm of biotechnological enhancement of common beans, an imperative challenge lies in 

devising a reliable and effective in vitro regeneration strategy, given the inherent difficulty of 

regenerating this crop in laboratory settings. This research, aiming to address this challenge, 

leverages the power of Machine Learning (ML) models, specifically employing algorithms for 

Artificial Neural Networks (ANN). The primary objective is to establish an efficient and 

repeatable in vitro regeneration process while simultaneously optimizing and predicting future 

outcomes. 

  

Materials and methods 

The study incorporates various variables such as bean genotype, explants, and different doses of 

6-benzylaminopurine (BAP) and CuSO4. A Recurrent Regression Neural Network (RRNN) is 

employed to model and anticipate the results of in vitro crop regeneration, specifically focusing 

on common beans. The experimental setup involves preconditioning common bean embryos with 

10, 15, and 20 mg/L BAP for 25 days, followed by growth in a post-treatment environment 

comprising 0.3, 0.6, 0.9, and 1.2 mg/L BAP for 7 weeks. Subsequently, the plumular apice is 

isolated for in vitro regeneration. Notably, the RRNN model is also integrated with a Genetic 

Algorithm (GA) to optimize the regeneration process further.  
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Results 

The results are compelling, with RRNN exhibiting the lowest Mean Squared Error (MSE) of 

0.061, signifying superior predictive accuracy in total regeneration. In comparison, Support 

Vector Regression (SVR), Random Forest (RF), and Extreme Gradient Boosting (XGB) models 

exhibit higher MSE values of 0.081, 0.081, and 0.097, respectively. These findings underscore 

the efficacy of the RRNN algorithm, outperforming other models across all parameters.  

 

Conclusions 

The superior performance of RRNN suggests its potential application in making precise 

predictions regarding common bean regeneration. In the context of a common bean breeding 

program, these outcomes can be harnessed to optimize and predict plant tissue culture methods, 

thereby enhancing biotechnological techniques employed in the cultivation of common beans. 

The integration of ML models, particularly RRNN, stands as a promising avenue for advancing 

crop regeneration strategies and contributing to the efficiency of biotechnological interventions 

in agriculture. 
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Introduction 

An integral part of sustainable cropping systems, grain legumes are a great source of high-

quality protein for food and fodder and a cornerstone of the agricultural system (Vanlauwe et al. 

2019). The pods and edible seeds of the common bean, scientifically known as Phaseolus vulgaris 
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L., are the most widely consumed parts of this grain legume crop (Nadeem et al. 2020). One "grain 

of hope" for the poor is the common bean, which is rich in protein, minerals (especially zinc and 

iron), vitamins, and antioxidants. Domestication of the common bean in the Andean and 

Mesoamerican areas produced two distinct gene pools, one from the Andes and one from 

Mesoamerica, both of which originated in Mesoamerica (Blair et al. 2018). Varieties in common 

bean growth habits, plant height, pods, maturity, seed weight, and size contribute to the legume 

crop's reputation for diversity (Nadeem et al. 2019). 

The loss of common bean output on a worldwide scale is being caused by a combination of 

biotic (insects and diseases) and abiotic (drought and edaphic) variables, and climate change is 

rapidly becoming an important agricultural concern (Yu et al. 2021). These considerations are 

driving efforts by scientists to create common bean cultivars that are more resistant to climate 

change and have better agronomic and nutritional qualities. Optimization of the in vitro plant 

tissue culture technique for complete plant regeneration is very challenging, yet necessary to 

attain the aim mentioned above using new biotechnological techniques. Many in vitro 

regeneration methods have been developed and recorded thus far.  

The common bean is notoriously difficult to regenerate in vitro for several reasons, including 

its stubbornness, genotype dependency, lack of repeatability, stunted development, roots, 

acclimation, and low shoot numbers. Therefore, to create top cultivars using biotechnological 

methods, particularly for crops that are difficult to work with, a novel, efficient, and reproducible 

approach is constantly required (Kumari et al. 2021). Choosing powerful explants with a high-

regeneration procedure is crucial to accomplishing the goal. Because of this, the common bean 

was treated with a high concentration of BAP before being used in an in vitro regeneration 

process, and a new type of explant called "plumular apices" was also used. Explants or seeds are 

first pretreated with cytokinins or other stimulants at low to high dosages for some time. Then, 

they are cultured on a post-treatment medium with either low levels of plant growth regulators 

(PGRs) or none (Özkan et al. 2019). 

Both endogenous and exogenous phytohormones play crucial roles in plant regeneration in 

vitro. The amounts of endogenous phytohormones vary among genotypes and explant types 

(Kumari et al. 2018). Exogenous cytokinin and auxin balances and amounts of endogenous 

phytohormones regulate in vitro shoot regeneration. The in vitro explant differentiation is 

controlled by the amounts of endogenous phytohormones, which are thought to be the main 

variable across different genotypes and competent explants. Further research is required to 

understand the signaling pathways involved in phytohormone metabolism, their functions in in 

vitro organogenesis, and the interactions between endogenous and exogenous phytohormones and 

their effects on organogenesis (Hesami et al. 2018). 
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From a multi-variable technique influenced by various phytohormones, including auxins, 

cytokinin, and their interaction, in vitro organogenesis may be seen in the context of many 

endogenous and exogenous phytohormones (Bidabadi et al. 2020). Furthermore, the 

developmental mechanisms involved in in vitro organogenesis are both non-linear and non-

deterministic. The nonlinearity in complex systems found in plant tissue culture cannot be 

adequately modeled using conventional computer approaches (Hesami et al. 2020). When it 

comes to modeling the non-linear and ill-defined systems in vitro culture, Artificial Intelligence 

(AI) models like ANNs and fuzzy logic are suitable methodologies. Examples are the Radial Basis 

Function (RBF) for modeling in vitro shoot proliferation in pear rootstock (Fallah Ziarani et al. 

2022) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) for modeling chrysanthemum 

somatic embryogenesis (Hesami et al. 2019). 

ANNs have gained significance owing to their exceptional capacity to represent intricate, 

non-linear connections that exist inside extensive and varied data sets. The versatility of ANNs 

makes them indispensable in several domains such as healthcare, where they aid in identifying 

illnesses and prediction, finance for evaluating risks and conducting automated trading, and also 

in natural language processing to enhance AI-driven communication. The primary advantage of 

ANNs is in their capacity to acquire knowledge and enhance performance via experience, 

emulating the functioning of the human brain. Contrary to conventional algorithms that adhere to 

predetermined rules, ANNs constantly adapt and fine-tune their parameters, resulting in enhanced 

accuracy and efficiency as time progresses. The capacity for self-learning and adaptability renders 

ANNs more suitable than other approaches, particularly in situations that include large databases 

containing intricate patterns and subtle intricacies. Their ability to effectively manage 

unstructured data and adapt to fresh data without requiring significant retraining further highlights 

their advantages over more rigid, rule-based systems. The flexibility and adaptability of ANNs 

make them essential tools for addressing contemporary computational difficulties in many fields. 

(Niazian et al. 2018). 

A significant development in agricultural research has been made with the use of ANNs and 

ML algorithms to plant biotechnology, specifically in the in vitro regeneration of common beans. 

This literature review explores the range of studies that have used these cutting-edge 

computational methods to simulate and improve our knowledge of the mechanisms involved in 

in vitro regeneration in the breeding of common beans. The investigation strives to provide an in-

depth analysis of how ML and ANN could transform the techniques employed for plant tissue 

culture and genetic modification of common beans by analyzing how well these algorithms 

forecast and optimize regeneration consequences. 
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The paper in reference (Aasim et al. 2023) describes a strategy for regenerating Royal purple 

in vitro using nodal section explants. The research then focuses on optimizing an array of input 

variables using PyTorch ANN and GA techniques. Comparatively, the Murashige and Skoog 

culture media resulted in a greater regeneration frequency of 91.52% and a shoot count of 1.96. 

In contrast, the woody plant medium (WPM) generated a regrowth frequency of 84.58% and a 

shoot count of 1.61 per transplant. The mathematical model included ML methods, namely 

Multilayer Perceptron (MLP), Extreme Gradient Boosting (XGB), and RF models, to forecast 

shot count and regeneration. The MLP model under the PyTorch platform had the greatest R2 

values for both output variables. The R2 values for regenerating and branch counting were 

measured as 0.69 and 0.71, respectively. 

The study in (Jafari et al. 2023) used Generalized RNN (GRNN) and RF to forecast the 

passive shoot regrowth opinions of P. caerulea. These responses include the rate, number, and 

dimension of de novo shoots. The predictions were based on various types and amounts of plant 

growth regulators (PGRs) and various callus kinds obtained from leaf, node, and internode 

transplants. The findings indicated that the RF and GRNN algorithms exhibited a substantial 

prediction accuracy (R2 > 0.86) in the training and testing sets for predicting all the parameters 

under investigation.  

In this research (Hesami et al. 2020), two ML techniques, namely MLP as an ANN and 

support vector regression (SVR), were used to simulate the somatic embryogenesis of 

chrysanthemum. The main objective was to evaluate the prediction accuracy of these algorithms. 

The findings indicated that the SVR model achieved a higher performance accuracy (R2 > 0.92) 

compared to the Multilayer Perceptron (MLP) model (R2 > 0.82). In addition, the Non-dominated 

Sorting Genetic Algorithm-II (NSGA-II) was used to optimize somatic embryogenesis. The 

findings demonstrated a remarkable embryogenesis rate of 99.09%. 

Recent experimental research can generate substantial data, enabling essential analysis and 

conclusions. The acquired data is kept in various databases using diverse methods. To accurately 

analyze the researchers' results and draw suitable conclusions, it is necessary to integrate this data 

and the enormous quantity of database information into the system. The article in (Küçükrecep et 

al. 2022) presents several viewpoints on the storage of data acquired in vitro plant tissue culture 

investigations, its integration with multiple sources, the derivation of novel information, and its 

practical use. 

The research study in (Türkoğlu et al. 2023) evaluated the genetic diversity of forty-

three fodder pea genotypes by assessing their ability to induce callus (CI), the percentage of 

embryogenic callus per explant, the proportion of reacting embryogenic calluses per explant, the 

number of cutaneous embryogenesis events, the number of reacting physical embryogenesis 
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events, the efficiency of regeneration (RE), and the number of recovered plants. The ANOVA 

analysis revealed statistically significant differences (p < 0.001) across the genotypes for all in 

vitro parameters. 

The process of establishing efficient and consistent in vitro regeneration was carried out in 

(Aasim et al. 2022), followed by ML models, specifically artificial neural network algorithms, to 

forecast and optimize the process. Prior treatment of plumular apical explants with 20 mg/L BAP 

had a detrimental effect, leading to a lower frequency and count of shoot regeneration, but resulted 

in longer shoots. The shoot regeneration frequency, shot counts, and shoot length showed a 

substantial increase when the BAP concentration in the post-treatment medium was raised. 

The works under evaluation show how these computational methods may improve the 

predictability and efficiency of regeneration processes, two important aspects of successful plant 

breeding. Combining these cutting-edge technologies improves breeding tactics and creates new 

opportunities for genetic engineering and plant tissue culture research. The research suggests that 

future paths for these models include improving their accuracy and investigating if they can be 

applied to other crop species. These developments have the potential to completely transform 

agricultural methods and make a substantial contribution to the world's food safety. 

 

Materials and Methods 

In Vitro Regeneration in Common Bean Breeding: The plant material used in this 

investigation was the common bean cultivar "Karacaşehir-90". The seeds have been carefully 

selected and then treated with a 3.5% (w/v) CuSO4 solution for 20 minutes to remove any surface 

contaminants. Subsequently, the seeds underwent a continuous rinsing procedure with sterile 

water for 10 minutes. This process was done three times to eliminate any remaining residues of 

CuSO4.  

Seeds (Figure 1a) were soaked in sterile water for 24 hours after which developed embryos 

(Figure 1b) were separated using sterile techniques. This study included the creation of a two-step 

experiment. Initially, fully developed embryos obtained from sterilized seeds were introduced 

onto MS media containing 10, 15, and 20 mg/L BAP (preparation medium) for 25 days. For the 

second phase, plumular apice transplants (Figure 1c) were extracted with caution from developed 

explants that had been pretreated. These separated transplants were placed on MS media 

supplemented with modest doses of BAP (0.25, 0.50, 1.00, and 1.50 mg/L) as the subsequent 

processing medium. The tissue samples were cultivated for 8 weeks using the medium after the 

therapy. Four distinct dosages (0.3, 0.6, 0.9, and 1.2 mg/L) of indole-3-butyric acid (IBA) have 

been employed for in vitro root formation. Plantlets with established roots were transplanted into 
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pots containing vermiculite to facilitate acclimation. The containers have been covered with a 

plastic bag and put in the growth chamber. 

 

 

(a)     (b)     (c) 

Figure 1. In Vitro Regeneration in Common Bean Breeding: (a) Sterile Seed with Integral 

Embryo (b) Developed Embryos Separated Using Sterile Techniques (c) Extraction of 

Plumular Apice Transplants 

 

The basal medium used for pretreatment procedures, post-treatment, and rooting was 

formulated by including MS (4.5 g/L), commercial sugar (32 g/L), and polyvinyl proline (27 

mg/L). The pH of all media was modified to about 5.9 using either 1N HCl or 1N NaOH. The 

medium was solidified using agar (6.7 g/L) and sterilized at 125°C for 25 minutes using an 

autoclave. The studies were conducted in a growth environment maintained at a temperature of 

24 ± 3°C and a photoperiod of 15 hours of light. The growth chamber had been fitted with white 

LEDs that emitted light at an intensity of around 2500 LUX.  

Response Surface Methodology (RSM): The RSM technique has been employed to 

simulate and maximize the chosen responses following varying factors and visually portray the 

outcomes. The RSM model produces predictions for several variables, shown as quadratic 

surfaces. This enables the forecast of the most favorable values in a 3D environment. The input 

variables consisted of the values for pretreatment procedures, after treatment, and their interacting 

impact. Conversely, the regeneration frequency (%), shoot count, and length of shoot (cm) have 

been adopted for the response surface computations. The level of agreement between the 

anticipated mathematical model and the observed data was quantified using R2 fit values. The 

data evaluations for all RSM experiments, including analysis of variability, regression, and 

development of polynomial surface equations and creating visualizations and forecasts of 

optimum values, have been performed using Minitab v20.4 statistical package. 
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Recurrent Regression Neural Network (RRNN) for Modeling and Foreseeing the 

Results of in Vitro Crop (Common Bean) Regeneration: This research used RRNN to model 

and predict the outcomes of in vitro crop regeneration (specifically, common bean) using input 

factors such as bean genotype, explants, and different dosages of 6-BAP and CuSO4. The 

regeneration frequency was used as the outcome variable for simulating the process of common 

bean regeneration in vitro. The dataset was partitioned into two parts, with 75% of the data used 

for training the model and the remaining 25% used for validation. 

Figure 2 shows the proposed RRNN model for in vitro crop (common bean) regeneration. 

Specht in 1991 developed a RRNN model with a very efficient training approach. The proposed 

RRNN consists of the following layers: the input layer, form layer, sum layer, and output layer. 

 

 

Figure 2. Proposed RRNN Model for in Vitro Crop (Common Bean) Regeneration 

 

 The input layer is fully connected to the form layer. Every individual neuron in the 

form level (𝑓𝑖) is connected to T-sum and E-sum neurotransmitters in the sum layer. The T-sum 

and E-sum are given as follows: 

𝑇 − 𝑠𝑢𝑚 = ∑ 𝑓𝑖𝑖=1        (1a) 

𝐸 − 𝑠𝑢𝑚 = ∑ 𝑚𝑖𝑓𝑖𝑖=1        (1b) 

The T-sum and E-sum neurotransmitters quantify the aggregate of the scaled and 

unscaled outputs of the form neurons. The link cost (𝑚𝑖) between the T-sum neuronal cells and 

another neuron of the form layer is set to the desired output, while the link cost for the E-

sum neuronal cell is set to one. The output layer calculates the unidentified outcome for the input 
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array by dividing the result of every T-sum neuronal cell by the response of every D-sum neural 

cell. During each cycle, a model was constructed using the training information and then used to 

forecast the results of the validation data set. To evaluate the prediction capability of the RRNN 

model, two performance metrics were employed: R2 and Root Mean Square Error (RMSE). A 

stronger forecasting capacity and efficiency of the developed model are shown by higher 

proportions of R2 and lower values of RMSE. 

Optimization Using GA: To enhance the efficiency of in vitro regeneration in common bean 

breeding via the use of a GA, the following algorithm may be implemented systematically: 

Step 1: Define a precise and unambiguous goal function that the GA will aim to optimize. 

This framework may aim to optimize the effectiveness or success level of in vitro regeneration in 

common beans. 

Step 2: Create an initial population of prospective solutions. Each member of the population 

embodies a distinct combination of factors or settings for in vitro regeneration, such as 

temperature and lighting conditions. 

Step 3: Represent these answers as chromosomes, usually in binary form, but other 

representations (such as floating-point) may be used depending on the individual situation. 

Step 4: Evaluate the level of suitability of each person within the population. The fitness 

function assesses the effectiveness of each combination of circumstances in obtaining the 

anticipated regeneration results. 

Step 5: Choose individuals for reproduction. Various techniques may be used, such as 

roulette wheel selection, tournament selection, or rank-based selection. This process entails 

selecting the most genetically suitable people to transmit their genes to the subsequent generation. 

Step 6: Crossover, or recombination, refers to the process in genetics when genetic material 

is exchanged between two chromosomes during cell division. Conduct a crossover operation on 

the chosen people to generate progeny. Crossover is the process of exchanging segments of 

genetic material between two parents to generate novel chromosomes. Methods include single-

point, two-point, or uniform crossover. 

Step 7: Arbitrarily apply mutation to select individuals. Mutation promotes genetic diversity 

by randomly modifying one or more genes inside the chromosome. To avoid random searches, it 

is essential to maintain a low mutation rate. 

Step 8: Develop the succeeding iteration. Substitute the previous cohort with the next 

generation of progeny while sometimes preserving the most optimal resolutions via privilege. 

Step 9: Verify the convergence criteria whether the algorithm has executed for a 

predetermined number of generations or if there has been a halt in the enhancement of fitness. 
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Step 10: Iterate or halt- If the convergence conditions are not satisfied, go back to step 4. 

Alternatively, conclude the algorithm. 

Step 11: Evaluate the optimal solution(s) the GA identifies. Within the framework of in vitro 

regeneration, this would include empirically verifying the optimum conditions proposed by the 

algorithm. Apply the most favorable circumstances to a practical in vitro regeneration procedure 

and observe the results for potential improvements if needed. 

Acknowledging that GAs are heuristic techniques that aim to find satisfactory solutions 

rather than ensuring the optimal one is crucial. Hence, it is essential to verify the outcomes 

meticulously via real experimentation. Furthermore, optimizing parameters, such as population 

size, mutation rate, and crossover rate, is of utmost importance for the effectiveness of the GA. 

The roulette wheel has been used to select the appropriate fitness. The GA has been executed with 

a starting population size of 250, an eventual population size of 1050, a crossover likelihood of 

0.75, and a mutation frequency of 0.05. 

 

Results and Discussion 

When developed embryo transplants were treated with 10, 15, and 20 mg/L BAP for 25 days, 

the size of the embryos increased by roughly 65-75% in most of the explants. This increase in 

size made it easier to identify plumular apice explants in sterilized conditions (Figure 3a). 

Subsequently, the explants were introduced to a medium following treatment, leading to the 

development of several shoots within 3-4 weeks.  

 

(a)     (b) 

Figure 3. In Vitro Regeneration in Common Bean Breeding: (a) Extraction of Plumular 

Apice Transplants (b) Development of Several Shoots from Plumular Apice Transplants 
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Additionally, callus formation was seen at the lower part of some explants. The transplants 

were cultivated in the growth chamber for 7 weeks to stimulate the development of several shoots, 

as shown in Figure 3b. The computation of variance demonstrated the impact of several input 

factors (preliminary treatment, after treatment, and their combinations) on the in vitro 

regeneration of common bean. 

The R² values for ML methods in predicting the shoot quantity, length, and overall 

regeneration effectiveness of common bean regeneration have been shown in Figure 4. Higher 

numbers imply a greater fit. The R² value, which ranges from 0 to 1, shows how well the model's 

forecasts fit the actual data. With R² values of 0.68, 0.72, and 0.78 for shoot length, number of 

shoots, and regeneration, respectively, the RRNN exhibits the greatest ability to predict among 

the three parameters, indicating a reasonably good prediction power, especially in regeneration. 

With significantly lower R² values, the SVR and RF methods perform similarly and show a 

moderate fit for the data (SVR scoring 0.32, 0.54, and 0.65, and RF scoring 0.3, 0.46, and 0.65, 

respectively). With R² values of 0.12, 0.49, and 0.53, the XGB method has the lowest predictive 

power among the examined models, suggesting a poor connection between the algorithm's 

predictions and the actual data. These findings imply that while RRNN is the best model for this 

use, there is still much space for advancement regarding ML algorithms' forecast accuracy in 

common bean regeneration. 

The three features of common bean regeneration—number of shoots, shoot length, and total 

regeneration—are predicted by different ML methods, and the corresponding MSE values are 

shown in Fig. 5. Lower values indicate higher model performance. The RRNN performs best for 

the number of shoots, with an MSE of 0.033. The SVR and RF algorithms, with MSEs of 0.038 

and 0.039, respectively, and the XGB algorithm, with an MSE of 0.042, are next in line. 

Comparable patterns may be seen in the length of shoots, where RRNN has the lowest MSE 

(0.026), followed by SVR, RF, and XGB (0.038, 0.037, and 0.041, respectively). With an MSE 

of 0.061, RRNN demonstrates the lowest error rate in total regeneration, whereas SVR, RF, and 

XGB display more errors with MSE values of 0.081, 0.081, and 0.097, respectively. According 

to these findings, the RRNN algorithm performs better than the other models for all parameters, 

indicating that it may be used to make precise predictions about common bean regeneration. 

Though they may have somewhat higher error rates, alternative algorithms may also be capable 

of making accurate predictions, as seen by the models' comparatively near MSE values, 

particularly regarding shot length and regeneration. 
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Figure 4. R2 Values of Various ML Algorithms for Number of Shoots, Length of Shoots, and 

Regeneration of Common Beans 

 

Conclusions: This study first used ML models, specifically algorithms for Artificial Neural 

Networks (ANN), to build a reliable and replicable in vitro regeneration process. Subsequently, 

the research further enhanced and forecasted future outcomes using optimization techniques. This 

research used a Recurrent Regression Neural Network (RRNN) to model and predict the outcomes 

of in vitro crop regeneration (specifically, common bean) by manipulating factors such as bean 

genotype, explants, and different concentrations of 6-benzylaminopurine (BAP) and CuSO4. The 

common bean embryos were preconditioned with different concentrations of BAP (10, 15, and 

20 mg/L) for 25 days. Subsequently, they were cultivated in a post-treatment environment 

containing varying concentrations of BAP (0.3, 0.6, 0.9, and 1.2 mg/L) for 7 weeks. 
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Figure 5. MSE Values of Various ML Algorithms for Number of Shoots, Length of Shoots 

and Regeneration of Common Beans 

 

Next, the plumular apice was separated for in vitro regeneration. The RRNN was also linked 

to a GA to optimize regeneration. The optimized inputs are bean genotype, explants, and different 

doses of 6-benzylaminopurine (BAP) and CuSO4. RRNN has the lowest error rate of 0.061 in 

complete regeneration, whereas SVR, RF, and XGB have higher error rates with MSE values of 

0.081, 0.081, and 0.097, respectively. Based on these data, the RRNN algorithm consistently 

outperforms the other models across all parameters, suggesting its potential for accurate 

predictions about common bean regeneration. 
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  چکیده

های آزمایشگاهی، این محصول در محیط در حوزه ارتقای بیوتکنولوژیکی لوبیاهای معمولی، با توجه به دشواری ذاتی بازسازی هدف:

این تحقیق، با هدف . یک چالش ضروری در ابداع یک استراتژی قابل اعتماد و مؤثر بازسازی در شرایط آزمایشگاهی نهفته است

ی مصنوعی های عصبهایی برای شبکهمویژه با استفاده از الگوریت، به(ML) های یادگیری ماشینپرداختن به این چالش، از قدرت مدل

(ANN )بهینه سازی و پیش با هدف اصلی ایجاد یک فرآیند بازسازی آزمایشگاهی کارآمد و قابل تکرار همزمان . کنداستفاده می

 .بینی نتایج آینده است

 benzylaminopurine-6ها و دوزهای مختلف این مطالعه متغیرهای مختلفی مانند ژنوتیپ لوبیا، ریزنمونه :هاروشمواد و 

(BAP)  و CuSO4 یک شبکه عصبی رگرسیون مکرر. گیردرا در بر می (RRNN) بینی نتایج بازآفرینی سازی و پیشبرای مدل

تنظیم تجربی شامل آماده سازی جنین های لوبیا با . شدویژه بر روی لوبیاهای معمولی استفاده محصول در شرایط آزمایشگاهی، به

میلی  2/1، و 9/0، 6/0 ،3/0 شامل تیمارروز، و به دنبال آن رشد در محیط پس از  25به مدت  BAP میلی گرم در لیتر 20و  15، 10

 قابل ذکر است، مدل. متعاقبا، اپیس پلومولار برای بازسازی در شرایط آزمایشگاهی جدا شدبود. هفته  7به مدت  BAP گرم در لیتر

RRNN  نیز با یک الگوریتم ژنتیک (GA) یند بازسازی را بیشتر بهینه کندیکپارچه شد تا فرآ. 
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نشان دهنده و این امر  بودقانع کننده دهد ، که کمترین میانگین مربعات خطا را نشان می061/0برابر با  RRNN بانتایج  :نتایج

تقویت و  (RF) ، جنگل تصادفی(SVR) های رگرسیون بردار پشتیباندر مقایسه، مدل. دقت پیش بینی برتر در بازسازی کل است

ها بر اثربخشی ین یافتهدادند. انشان  097/0و  081/0، 081/0برابر با  بالاتری را به ترتیب MSE مقادیر (XGB) گرادیان شدید

 .کندها در همه پارامترها بهتر عمل میکند، که از سایر مدلتأکید می RRNN الگوریتم

در زمینه یک برنامه . دهدبینی دقیق در مورد بازسازی لوبیا نشان میشکاربرد بالقوه آن را در پی RRNN عملکرد برتر گیری:نتیجه

گیاهی مهار کرد و در نتیجه  توان برای بهینه سازی و پیش بینی روش های کشت بافتاصلاح مشترک لوبیا، این نتایج را می

عنوان یک ، بهRRNN ویژه، بهMLهایادغام مدل. های بیوتکنولوژیکی مورد استفاده در کشت لوبیا معمولی را تقویت کردتکنیک

 .های بازسازی محصول و کمک به کارایی مداخلات بیوتکنولوژیکی در کشاورزی استراه امیدوارکننده برای پیشبرد استراتژی

 ، یادگیری ماشینی، الگوریتم ژنتیک، لوبیا معمولیRNNاصلاح، بازسازی آزمایشگاهی، : هاکلیدواژه
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