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Abstract 

Objective 

Plant breeders (PB) have significantly improved agricultural output and quality by utilizing 

modern scientific and technological developments. Costs have decreased and the PB process has 

quickened due to the development of genomic tools and sequencing, especially since the human 

genome project. Addressing global issues pertaining to water resources and food security requires 

this progress. High-throughput phenotyping, precision agriculture, and crop-scouting have all 

been improved by the integration of cutting-edge technology such sensor systems, satellite 

images, robots, big data analytics, and genomics. These developments contribute to the growth of 

digital agriculture, which has the potential to transform PB by taking a more interdisciplinary 

approach. To examine the method by which new developments in digital agriculture, genomics, 

and sensor technologies are changing plant breeding, enhancing crop quality and productivity, 

and tackling global issues with water resource management and food security. 

 

Results 

Plant breeding has become faster and less expensive due to the combination of genetic tools, 

sequencing techniques, and contemporary agricultural technologies. Precision agriculture has 

greatly increased high-throughput phenotyping and crop scouting, by using technology like 

robotics, big data analytics, and satellite photography. These developments aid in the creation of 

sustainable, more effective farming methods. 
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Conclusions 

An innovative approach for crop improvement is being developed by the ongoing integration of 

multidisciplinary technologies in plant breeding. It is anticipated that enhanced genomics and 

digital agriculture would improve plant breeders' capacities, allowing them to tackle the escalating 

problems of food and water security in a world that is becoming more interconnected by the day. 
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Introduction 

According to forecasts, the world’s population will maintain its current rate of growth or 

even accelerate in the coming decades. The population's demand for food is expected to increase 

at the same rate. Crop productivity is affected by a number of biological and environmental 

factors, which are exacerbated by human-induced climate change (Shivanna 2022). Plant 

breeding (PB) is crucial for developing new cultivars with higher yields, improved quality, and 

the ability to withstand various abiotic and biotic challenges (Swarup et al. 2021). Global wheat 

production has increased from 200 million tons in 1961 to 775 million tons in 2023 without any 

significant change in the total area under wheat cultivation. The main reason is primarily the 

advancement and implementation of semi-dwarf, high-yielding wheat varieties responsive to 

inputs and resistant to major pests and adverse conditions (Radhika & Masood 2022). Across 

wheat production there have been improvements in agronomic practices, automation, favourable 

regulations, and infrastructure. Moreover, data generation in agriculture and biotechnology has 

greatly increased in recent years due to the very rapid development of high-performance 

technologies (Mohammadabadi et al. 2024). These data are obtained from studying products, 
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foods, and biological molecules to understand the role of different aspects of agriculture in 

determining the structure, function, and dynamics of living systems (Pour Hamidi et al. 2017). 

Artificial neural networks have been proposed to alleviate limitation of traditional methods and 

can be used to handle nonlinear and complex data, even when the data is imprecise and noisy 

(Pour Hamidi et al. 2017). Agricultural data can be too large and complex to handle through visual 

analysis or statistical correlations. This has encouraged the use of machine intelligence or artificial 

intelligence (Ghotbaldini et al. 2019). Thus, this review aimed to examine the method by which 

new developments in digital agriculture, genomics, and sensor technologies are changing plant 

breeding, enhancing crop quality and productivity. 

 

History 

Genetic modification of crops has traditionally been based on conventional Cross-Breeding 

(CB) approaches, where breeding and selection of genotypes is primarily based on pedigree and 

quantitative ability (Srinivasa Rao et al. 2023). The development of improved crop cultivars has 

been greatly facilitated by careful evaluation of parents for various traits, focused CB, utilization 

of summer and winter shuttle breeding strategies to accelerate the PB cycle, critical evaluation of 

elite germplasms is key locations, and efficient database management (Zoran et al. 2022). The 

rapid development of DNA-sequencing technology has enabled the PB to obtain extensive 

genomic data on crops, which is highly beneficial for selection (Suyama et al. 2022). The 

emergence of numerous DNA-marker-based genotyping methods has dramatically expanded the 

pool of DNA indicators accessible to PB. This advancement enabled PB to select for plant 

efficiency according to their genetic marker component rather than relying solely on their 

phenotypic effectiveness, which is subject to various limits of selection effectiveness (Begna 

2021).  

Heterosis and the production of traditional varieties are typically intertwined in various CBs 

in the PB (Liu et al. 2020). Hybridization is a crucial method for PB, and the most important 

factor for effective hybridization is careful selection of parents. The effectiveness of the CB can 

only be determined after several generations, as the efficiency of the mixed progeny may not fully 

match that of their parents (Scott et al. 2020). The process of choosing parents is challenging. 

Suppose the quality of mating can already be determined in the first generations, by focusing on 

selecting the right parents. In this case, the quality of the combinations will be discovered at the 

earliest opportunity, leading to an improvement in breeding outcomes. 

Genomic Prediction (GP) is a cutting-edge, data-driven approach that has gained widespread 

acceptance and is being extensively utilized as a beneficial tool to expedite the improvement of 

genetic traits in PB projects (Tsai et al. 2020). GP utilizes sophisticated statistical Machine-
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Learning (ML) methods to identify individuals inside a breeding populace according to breeding 

values inferred from markers found throughout the genome (Srinivasa Rao et al. 2023). The 

selection procedure depends on information from training people, including phenotypic and 

genotypic characteristics (Figure 1). 

Following an intensive training process, these models produce forecasts of breeding or 

phenotypic characteristics for characteristics of a target population based only on genotypic 

information (Dessy et al. 2023). Before implementing selection, it is essential to assess the 

effectiveness of model predictions using Cross-Validation (CV) techniques (Allgaier & Pryss 

2024). Further details on CV methods are found in the next section (Surendar et al. 2024). 

Evaluating the efficacy of forecasting algorithms and comparing distinct sets of statistical ML 

algorithms is crucial in GP (Camgözlü & Kutlu 2023). This evaluation involves considering 

different circumstances, such as incorporating characteristics, known central genetics, marker-

trait associations, Genotype Three Environments (G3E) relationship, and other omics 

information, including transcriptomics, metabolomics, and proteomics (Ansarifard et al. 2020). 

 

Figure 1. GP characteristics 
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GP considers the breeding characteristics of the parental standard and variation of Mendelian 

sampling to determine an offspring's Genomic Estimated Breeding Figures. This method can be 

utilized for two purposes: (1) to quickly select desirable traits in early generations by forecasting 

additive impacts and (2) to choose lines in later phases of breeding by forecasting the genotypic 

amounts of people, considering both additive and non-additive impacts that determine the final 

economic worth of the queues. Several variables influence GP and can significantly diminish its 

precision (Figure 2).  

 

 

Figure 2. Influencing variables for GP 

 

If not adequately dealt with, these issues can impede the efficient application of GP in PB 

projects. When optimizing the training populace, it is crucial to focus on essential parameters such 

as population count, genetic variation, and the genetic connection with the breeding community. 

Additional variables that make a more brutal genetic prediction in PB include the degree of 

linkage disequilibrium among indicators in both the development and evaluation of populations, 
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the genetic complexities and inheritance of target characteristics, the accuracy and reliability of 

phenotyping, the use of mathematical ML designs, the relationship between genotype and 

environment, and other non-additive variables (Guo & Li 2023). 

 

Proposed big data-based cross-breeding method 

The combination of phenomic and genomic information can revolutionize PB. Incorporating 

field-based single-plant phenotyping in the early generations has received limited attention in 

research. PB can expedite selecting and improving populations early by utilizing high-throughput 

analysis of individual seedlings. This approach can accelerate genetic advancements and enhance 

the efficiency of breeding resources. The volume of data in PB is increasing due to several factors. 

Hundreds of potential varieties are evaluated and thoroughly described each season, combining a 

wealth of phenotyping data gathered from many sources. Big data is generated using molecular 

indicators. Professional breeders are faced with extensive datasets. 

Cross-breeding method: Figure 3 shows the architecture of the big data-based CB model. 

To enhance the accuracy of predicting the relationship between an organism's genetic makeup 

and its observable traits, it is necessary to establish comprehensive systems that can handle large 

amounts of data designed explicitly for PB purposes. One effectively tackles the task of modeling 

and condensing data for decision-making purposes under time pressure. To tackle these problems, 

biometrics specialists have developed a software pipeline that integrates data and algorithms to 

extract relevant details for the breeders. The biometrics pipeline encompasses characteristics of 

the design and evaluation of phenotyping studies, the transfer of polymorphisms from mothers to 

offspring, the integration of genotypes and traits in tracing and designs, and utilizing genomic 

forecasting systems. The biometrics pipeline assisted in addressing this issue by providing tools 

to gain deeper insights into the crossing parents, enabling an understanding of how discrimination 

occurs within a community. This knowledge is crucial for identifying and developing the most 

effective crossing parents and ultimately selecting the best varieties by combining the desired 

traits and genes into a single variety. By utilizing diverse germplasm, extensive genomic, 

phenomic, and environmental data, and integrative evaluation, the research can pinpoint causal 

loci and predict traits for breeding accurately. 

Crop breeding management: Combining ability evaluation is a valuable tool for breeders 

to assess the strengths and weaknesses of various mixtures and parent plants in the early breeding 

stages. This allows breeders to narrow down the selection of materials, conserve period in the 

breeding process, and enhance overall breeding effectiveness. Thus, the research developed a PB 

data management structure called the gold seed breeding big data analytics-based system 
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combining ability assessment and implementation. The system operates on a cloud computing 

infrastructure. It has the potential to enhance flexibility, minimize infrastructure needs, enhance 

accessibility, and effectively manage extensive data collection. Figure 4 illustrates the operational 

sequence of the system.  

 

Figure 3. Big data-based cross-breeding model 

 

Each year, breeders carefully choose parents based on their breeding goals. The technique 

has an efficient retrieval feature for quickly looking for parent breeding resources. The approach 

incorporates incomplete, complete, and limited diallel crossing procedures, which aid in 

developing a crossbreeding strategy for combining ability testing. The system automatically 

detects prior combinations of CB organisms, orthogonal pairings, and reciprocal hybrids. 

Breeders are offered several trial layout strategies, such as randomized sections and entirely 

random ones based on the crossbreeding plan. A subordinate plans the planting schedule in the 

field according to the trial plan devised by the breeder. The employees plant the seeds according 

to the predetermined planting strategy. Throughout the process of crop development, a 

subordinate gathers information on the characteristics of the plants. The breeder assesses the 
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elements and examines the capacity of CB elements to combine in the system with a single action. 

This characteristic helps breeders discern better parents and offspring based on their achievements 

in General Combining Abilities (GCA) and Specialized Combined Abilities (SCA). These 

assessments are utilized in future breeding programs. 

 

Figure 4. Big data management model 

 

Results and discussion 

The accuracy of single-cross forecasting was assessed using Leave-One-Out CV (LOOCV). 

LOOCV is a specific instance of k-fold CV, where k equals the number of observations (n). The 

research chose LOOCV because it reduces bias in the predictor by using a more significant 

number of folds. Five distinct LOOCV situations were examined, each having differing levels of 

correlation between the training and verification sets for single crossings (Figure 5). 

 

Figure 5. Leave-one-out cross-validation (LOOCV) results 
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The CV cases were as stated: (1) In T2, both parents of a single cross in the verification set 

were examined. (2) In T1F, only the female parenting of a single cross in the verification set was 

examined. (3) In T1M, only the male parent of a single cross in the verification set was examined. 

(4) In T0, neither of the adults of a single cross in the verification established was tested. (5) In a 

novel single-cross relatives, all single crosses relating to that family were eliminated from the 

training set and established the verification set. The traditional LOOCV method was adjusted 

significantly to provide a consistent training set length for every examined CV situation. The 

learning set size was limited to 261 in all five situations. The research established the training set 

dimension at 250 for each of the five CV situations to exclude the influence on sample density.CV 

is performed in the first four cases by placing every 312 individual crossings into the validation 

set precisely once, known as LOOCV. During every 312 cycles, a sampling of 250 single crosses 

was randomly selected from the remainder of single crosses without replacement to create the 

learning set. The process was iterated 30 times to ensure enough resampling of the learning set, 

resulting in 9360 reproduced training sets. During every 30 cycles, the forecasts were combined 

into a unified vector and compared with the phenotypic findings using the method. In situation 5, 

the CV process was carried out to include every one of the nine single-cross parents in the 

verification set once, using the LOOCV approach. The process was iterated 30 times by randomly 

selecting 250 individual crosses without substitution from the experimental set. The precision of 

the forecasting was assessed exclusively for the six most significant families due to the limited 

size of the three groups (f7, f8, and f9), which hindered the appropriate estimation of correlation 

scores. 

The single-cross best linear unbiased predictors obtained from modeling (1) were considered 

the measured single-cross efficiency and used for verification. The forecasting precision was 

quantified using Pearson’s correlation factor, which measures the relationship between measured 

and anticipated single-cross efficiency. This value was split by the square root of the broad-sense 

heredity on an entry-mean foundation. The average forecasting efficiency over the 30 trials was 

provided. The Standard Errors (Ses) of the forecasting efficiency were computed using the 

bootstrap approach, included in the R package called “boot.” During each of the 30 cycles, the 

forecasted and discovered variables were recreated 200 times with substitution. The resultant 

range of 200 correlation coefficient predictions was utilized to determine the bootstrap SE. The 

average SE was recorded over the 30 iterations. 

The research initially assessed the predictive accuracy of T2, T1F, T1M, and T0 situations 

in the entire population using LOOCV. Saty Green (SG) and Plant Height (PH) had higher 

prediction accuracies for all cases than Grain Yield (GY) (Figure 6). The highest forecasting 

precision was seen for T2, with T1F, T1M, and T0 following in descending order. The four 
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techniques showed comparable levels of accuracy when applied to both the T2 and T1F situations. 

Techniques 1a and 1b exhibited better results than methods 2a and 2b in forecasting single-cross 

results for the T1M and T0 situations. Applying the proposed modeling resulted in slight 

improvements in the precision of predicting GY and Plant Height (PH), with the highest 

improvement observed in the T0 situation. 

 

 

(a) 

 

(b) 

 

(C) 

Figure 6. Prediction result analysis 

 

Conclusions: Thanks to significant developments in breeding methods, the research can now 

efficiently and inexpensively analyze vast quantities of big genetic data obtained from individual 

plant samples. PB has successfully implemented these enhancements and developed a range of 

cultivars with increased productivity and improved characteristics to ensure the safety of the food 

the research consumes daily. The current rate of genetic improvement needs to be enhanced to 

fulfill the projected food requirements, even with the utilization of sophisticated breeding 

techniques and platforms. Hence, PB must ascertain a more streamlined approach to enhance 

genetic advancement and develop resilient varieties to climate change. The article suggests that 

genomic forecasting, forecasting breeding, and utilizing big data from genomics and phenomes 

are all possible methods to accelerate the rate of genetic improvement. To fully use the benefits 

of new genetic advancements, it is imperative to consistently generate large amounts of genomic 
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information, including several types of biological information, and analyze this multidimensional 

information. 
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   چکیده

توجهی بازده و کیفیت کشاورزی  های علمی و فناوری مدرن، به طور قابل گیری از پیشرفتبا بهره (PB) نباتاتکنندگان  اصلاح هدف:  

به دلیل توسعه ابزارهای ژنومی و توالی یابی، به ویژه از زمان پروژه ژنوم   PB ها کاهش یافته و فرآیندهزینه .  اندرا بهبود بخشیده

فنوتیپ با کارایی  .  پرداختن به مسائل جهانی مربوط به منابع آب و امنیت غذایی نیازمند این پیشرفت است.  انسانی، سریع شده است

ها، ای، رباتهای حسگر، تصاویر ماهوارههای پیشرفته مانند سیستمبینی محصول همگی با ادغام فناوریبالا، کشاورزی دقیق و پیش

 کند، که پتانسیل تغییرها به رشد کشاورزی دیجیتال کمک میاین پیشرفت   . اندهای بزرگ و ژنومیک بهبود یافتهتجزیه و تحلیل داده 

PB  های جدید در کشاورزی دیجیتال، ژنومیک و برای بررسی روشی که با آن پیشرفت.  تر داردایرشته را با اتخاذ رویکردی بین

دهند و با مسائل جهانی مدیریت  وری محصول را افزایش می دهند، کیفیت و بهرههای حسگر، اصلاح نباتات را تغییر می آوریفن

  .کنندمنابع آب و امنیت غذایی مقابله می 

تکنیک   نتایج:  ژنتیکی،  ابزارهای  از  ترکیبی  دلیل  به  نباتات  توالیاصلاح  فناوریهای  و  و کم  یابی  های کشاورزی معاصر سریعتر 

ای، های بزرگ و عکاسی ماهواره هایی مانند روباتیک، تجزیه و تحلیل داده کشاورزی دقیق با استفاده از فناوری.  تر شده استهزینه

های کشاورزی پایدار و ها به ایجاد روش این پیشرفت.  سازی و شناسایی محصولات با کارایی بالا را بسیار افزایش داده استفنوتیپ

  .کندمؤثرتر کمک می

https://orcid.org/0009-0001-9755-7950
https://orcid.org/0009-0006-8132-8842


   ( 1403 زمستان ،4، شماره 16مجله بیوتکنولوژی کشاورزی )دوره   

250 

Agricultural Biotechnology Journal;      Print ISSN: 2228-6705,      Electronic ISSN: 2228-6500 

 

ای در اصلاح نباتات در حال توسعه  های چند رشتهیک رویکرد نوآورانه برای بهبود محصول با ادغام مداوم فناوری  گیری:نتیجه

های پرورش دهندگان نباتات را بهبود بخشد و به آنها شود که ژنومیک پیشرفته و کشاورزی دیجیتالی ظرفیتپیش بینی می .  است

 .تر می شود، مقابله کننداجازه دهد تا با مشکلات فزاینده امنیت غذا و آب در دنیایی که روز به روز به هم پیوسته 

 عملکرد غذا، کلان داده ، اصلاح نژاد متقابل، پیش بینی: کلیدی هایواژه

 

 . مروری: نوع مقاله

بردها برای  های کراسبینی ویژگی های ژنتیکی بزرگ برای پیشتجزیه و تحلیل داده   (1403)  پاتیل مانیشا  پراشانت،  پریا  ویج  استناد:

 . 250-237(، 4)16 ،بیوتکنولوژی کشاورزیمجله  . افزایش بازده غذا
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