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Abstract 

Objective 

The pharmaceutical production environment is increasingly adopting progressive methods like 

hot-melt extrusion (HME) and three-dimensional (3D) printing to expand personalized, effective, 

and scalable drug delivery systems. Both techniques rely heavily on the excipient Eudragit (EUD), 

which represents a broad family of methacrylate-based polymers. This review targets to supply a 

wide account of the application of EUD polymers in HME and 3D printing, with a centralization 

on their role in controlled drug release systems of sustained, immediate, and aimed types. 

Materials and Methods 

The review surveys the utilization of numerous grades of EUD, like EPO, RL, RS, L100, S100, 

and L100-55, in formulation design, process optimization, and drug release mechanisms. The 

discussion encompasses the evaluation of formulation strategies, processing situations, and post-

processing stability. Innovations in recent years, containing smart and functionalized EUD-based 

systems with mucoadhesive, colon-specific, and theranostic properties, are also examined. 

Additionally, mechanical characteristics and drug–polymer compatibility are analyzed as critical 

determinants of successful formulation. 

Results 

EUD polymers have been demonstrated to support a broad spectrum of drug delivery platforms 

and dosage forms, proposing versatility and adaptability to pharmaceutical processing. Case 

studies and recent expansions show the capability of EUD to enable controlled release 

mechanisms, while also addressing particular therapeutic requirements. Smart functionalization 

of EUD systems has expanded their potential to include mucoadhesion, site-specific delivery, and 

diagnostic utilizations. However, challenges stay, containing issues of thermal degradation 

through processing, insufficient miscibility between drugs and polymers, and sensitivity to 

moisture. These limitations pose meaningful formulation challenges that must be managed 

carefully via process-specific and formulation-specific solutions. 
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Conclusions 

This review underscores the central role of EUD polymers in next-generation pharmaceutical 

manufacturing, exclusively in the context of HME and additive manufacturing. While these 

polymers hold great promise for enabling progressive drug delivery systems, technical challenges 

persist, containing drug–polymer miscibility, risk of thermal degradation, and maintenance of 

post-processing integrity. Addressing these issues is crucial for unlocking the full potential of 

EUD polymers in future drug expansion. By integrating case studies, formulation strategies, and 

mechanistic perception, this review supplies a worth resource for researchers and formulators 

seeking to exploit the adaptability of EUD in modern pharmaceutical utilizations. 
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Introduction 

The concept of controlled drug delivery is a dynamic and multifaceted area of simultaneous 

pharmaceuticals and medicine (Wang et al., 2020). Researchers are continually exploring novel 

attitudes to drug production, with a strong emphasis on technologies that progress 

physicochemical properties, bioavailability, and patient compliance (Dumpa et al., 2021). 

Controlled drug delivery systems are designed to raise therapeutic outcomes by minimizing 

under- and overdosing created by uncontrolled release, reducing the requirement for frequent 

administration, and delivering drugs to particular sites with greater precision. Among their 

advantages are the capability to hold stable drug levels, reduce side effects via optimized dosing, 

and progress patient adherence (Langer, 1980). An ideal drug delivery system should be passive, 
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free from leachable impurities, biocompatible, mechanically robust, comfortable for patients, 

capable of delivering higher drug loads, non-hazardous in the event of uncontrolled release, and 

easy to administer, withdraw, manufacture, and sterilize. It should also supply a high degree of 

specificity in targeting organs or tissues. Polymer-based drug delivery systems meet most of these 

requirements and have thus become a major centralization of biomaterials study in recent years 

(Ghosh, 2004). These polymers are exclusively advantageous because they are biodegradable, 

biocompatible, and easily cleared from the body, thereby reducing dosing frequency. They also 

hold drug concentrations within the therapeutic window and progress patient acceptance by 

masking unpleasant tastes and odors (Nikam et al., 2023). Furthermore, polymer-based systems 

can regulate release kinetics, raise the solubility of poorly water-soluble drugs, and enable site-

specific delivery within the gastrointestinal tract (Patra et al., 2017). In recent decades, the 

pharmaceutical industry has witnessed major advancements in drug delivery, especially with the 

expansion of sophisticated manufacturing platforms like hot-melt extrusion (HME) and three-

dimensional (3D) printing (Fina, 2020). These platforms have become prominent for producing 

solid dosage forms with accurate control over release kinetics, geometry, and site-specific 

targeting—features not easily achieved applying conventional tableting or coating techniques. 

The fused deposition modeling (FDM) method of 3D printing, which constructs dosage forms by 

layering melted material, is exclusively relevant, as it is closely linked to the HME process (Patil 

et al., 2024). HME, a solvent-free and continuous process, has gained widespread utilization due 

to its scalability, versatility, and suitability for preparing solid dispersions, exclusively for poorly 

water-soluble drugs. It permits thorough mixing of drugs and polymers at elevated temperatures 

and shear situations, consequence in homogeneous systems with increased bioavailability, taste 

masking, and stability. Thus, HME tasks both as a pharmaceutical manufacturing method and as 

a preparatory step for producing FDM-compatible filaments (Dos Santos et al., 2021). FDM-

based 3D printing, applying these filaments, permits the on-request fabrication of personalized 

dosage forms with programmable geometries and tailored release profiles, aligning with the goals 

of precision medicine and flexible manufacturing. In the HME process, a blend of polymers and 

drugs is conveyed via a heated barrel applying a single- or twin-screw extruder and then extruded 

via a die into numerous shapes, which can be adjusted by the operator (Bandari et al., 2021). In 

some cases, additives like plasticizers are incorporated to progress material extrusion and 

processability (Tran et al., 2021). Processing temperatures typically exceed the polymer’s glass 

transition temperature (Tg) and melting temperature (Tm), enabling molecular-level mixing of 

drugs and polymers. This supplies different benefits, containing the elimination of solvents, 

simplified production, and compatibility with automation, all highly valued in pharmaceutical 

manufacturing (Tambe et al., 2021). HME has been applied with diverse polymers to create 
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multiple dosage forms, like tablets (Cantin et al., 2021; Patki et al., 2020), pellets (Emam et al., 

2021; Dumpa et al., 2018), implants (Stansbury & Idacavage, 2016), and transdermal systems 

(Koutsamanis et al., 2020). Its applying in mixture with 3D printing has further accelerated 

innovation in novel drug delivery systems. Among the most momentous polymers in these 

processes are Eudragit (EUD) polymers, a versatile class of polyacrylates with diverse solubility 

profiles that make them exclusively suitable for sustained-release formulations (Koutsamanis et 

al., 2020). Originally expanded in Darmstadt and Weiterstadt and marketed by Evonik Industries 

in the 1950s, EUD polymers stay essential in modern drug delivery. They are distinguished by 

their heat stability, tunable pH-dependent solubility, and functional adaptability. The EUD family 

includes methacrylate copolymers with different permeability, charge, and dissolution pH 

thresholds, permitting utilizations in time-controlled release (Eudragit RL/RS), gastro-resistance 

and gastrointestinal targeting (Eudragit L100/S100), and taste masking (Eudragit E PO). Their 

significance is underscored by their inclusion in the USP-NF, BP, PhEur, and the Handbook of 

Pharmaceutical Excipients (Patel et al., 2011). In spite of their versatility, the effective utilization 

of EUD polymers in HME and 3D printing poses challenges, containing narrow processing 

windows, drug–polymer miscibility issues, and the requirement for plasticizers to ensure 

sufficient melt flow, filament flexibility, and printability. While numerous investigations have 

examined EUD-based systems individually, wide evaluations of their behavior across multiple 

manufacturing and drug-release platforms stay scarce. This study addresses this gap by showing 

a systematic evaluation of the role of EUD in modern drug delivery, supplying a scientific and 

practical resource for formulation scientists, pharmaceutical engineers, and regulatory 

professionals. 

 

Eudragit Polymers 

Until the 1950s, all oral drugs—regardless of their sophistication—shared a major limitation: 

they lacked the capability to control the timing or site of release of their active components. To 

address this, Eudragit (EUD) was expanded by Röhm & Haas GmbH in Darmstadt. The name 

Eudragit derives from the Greek word Eύ (“good”) and the German word dragieren (“sugar 

coating”), signifying an “exceptional functional coating” solution to this challenge. The 

introduction of the first EUD-coated pharmaceuticals marked a turning point in pharmaceutical 

history. EUD products are specialty polymers with diverse solubility characteristics, which Röhm 

researchers distinguished as a key feature for drug delivery. Their first pharmacological coatings, 

expanded in 1953, were alkaline-soluble and resistant to gastric acids, thereby enabling the release 

of active compounds in the intestine rather than the stomach. Variants of this original EUD type 
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are still broadly applied for coating oral solid dosage forms like tablets, capsules, and granules 

(Yurtsal & Hasdemir, 2022). In the late 1950s, further improvements introduced EUD coatings 

that dissolve in gastric acid. Subsequent generations of EUD were expanded to regulate drug 

release over extended durations, known as retard preparations, which withstand gastric acid and 

hold therapeutic activity throughout the gastrointestinal tract, thereby progressing the 

effectiveness of particular medications. Today, EUD study and production are integrated into the 

Chemicals Business Area of Evonik Industries AG, with manufacturing facilities in Darmstadt, 

Weiterstadt, and Worms. EUD is synthesized via polymerization of acrylic and methacrylic acids 

or their esters, like butyl ester or dimethylaminoethyl ester. It is officially distinguished in 

different pharmacopeias, containing the USP-NF, BP, Ph. Eur., and the Handbook of 

Pharmaceutical Excipients (Patel et al., 2011). Over time, EUD acrylic polymers have been 

introduced in a chronological sequence of grades, each tailored to particular pharmaceutical 

requirements (Patel et al., 2011). Structurally, EUD polymers are synthetic acrylic copolymers, 

prepared from esters of acrylic and methacrylic acid applying free radical polymerization (Wen 

& Park, 2010; Nollenberger & Albers, 2013). Their physicochemical properties are identified by 

their functional groups (Figure 1), while their solubility within the gastrointestinal tract is 

governed by monomer conformation and polymerization situations (Wen & Park, 2010). Due to 

their resistance to digestive enzymes and bodily fluids, EUD polymers are classified as non-

biodegradable. Originally marketed as organic solvent solutions, the product line has since 

expanded to include alternative physical forms like aqueous dispersions (D), granules (100), 

powders (PO), and organic solutions. The introduction of aqueous dispersions has meaningfully 

reduced environmental impact (Malá et al., 2014; Thakral et al., 2013). EUD polymers exhibit 

excellent film-forming potencies, containing high flexibility, low water vapor permeability, 

strong pigment-binding capacity, and broad formulation versatility (Nollenberger & Albers, 2013; 

Ceballos et al., 2005). They are broadly applied in pharmaceutical manufacturing to design solid 

dosage forms with tailored release profiles for modified-release utilizations. Additionally, they 

protect active pharmaceutical components from environmental stressors like humidity and light, 

and serve traditional film-coating purposes (Wen & Park, 2010; Nollenberger & Albers, 2013). 

EUD polymers also prevent interactions between the drug core and coating layers, further 

progressing stability and patient compliance (Nollenberger & Albers, 2013). A comparative 

summary of the different EUD grades, their functional groups, and solubility characteristics is 

shown in Table 1. 
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Figure 1. Structures of representative Eudragit copolymers, illustrating their functional 

groups (R) and related physicochemical properties (adapted from Naiserová et al., 2019). 

 

Table 1. Comparative summary of major Eudragit grades applied in pharmaceutical 

utilizations 

Eudragit 

Grade 
Functional Group 

pH Solubility 

Range 

Solubility 

Behavior 

Primary 

Utilizations 

Eudragit 

E PO 

Dimethylaminoethyl 

methacrylate 

Soluble below 

pH 5.0 

Cationic, 

dissolves in 

gastric pH 

Taste masking; 

immediate gastric 

release 

Eudragit 

L100 

Methacrylic acid–methyl 

methacrylate (1:1) 

Soluble above 

pH 6.0 

Anionic; 

enteric soluble 

Enteric coating; 

small intestine 

targeting 

Eudragit 

S100 

Methacrylic acid–methyl 

methacrylate (1:2) 

Soluble above 

pH 7.0 

Anionic; 

delayed release 

Colon targeting; 

enteric coating 

Eudragit 

L100-55 

Methacrylic acid–ethyl 

acrylate (1:1) 

Soluble above 

pH 5.5 

Anionic; 

gastric-resistant 

Enteric tablets; 

pediatric-friendly 

formulations 

Eudragit 

RS PO 

Ethyl acrylate, methyl 

methacrylate + 5% quaternary 

ammonium compound (QAC) 

pH-

independent; 

insoluble 

Swellable; low 

permeability 

Sustained release 

(low permeability) 

Eudragit 

RL PO 

Ethyl acrylate, methyl 

methacrylate + 10% quaternary 

ammonium compound (QAC) 

pH-

independent; 

insoluble 

Swellable; 

higher 

permeability 

Sustained release 

(higher 

permeability) 
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Characterization and types of Eudragit polymers: Methacrylate copolymers can be 

broadly categorized into pH-dependent soluble types and pH-independent insoluble types. The 

anionic copolymers Eudragit L, S, and FS, which display pH-dependent solubility, are 

predominantly employed in gastro-resistant dosage forms. In contrast, the pH-independent 

copolymers, like Eudragit NE, NM, RL, and RS, are broadly applied in sustained-release 

formulations (Vasileiou et al., 2017; Vysloužil et al., 2013). With the exception of the acid-soluble 

Eudragit E, all EUD polymers are applied in modified-release drug delivery (Gallardo et al., 

2008). 

Classification of Eudragit polymers: EUD polymers can be classified based on their 

intended utilization or the type of formulation generated (Patel et al., 2011; Bulja et al., 2017). 

The important classes include: Time-controlled drug release via sustained-release formulations, 

Gastro-resistance and gastrointestinal (GI) targeting via enteric formulations, and Moisture 

protection and taste/odor masking via protective formulations. 

Eudragit for time-controlled drug release: EUD polymers are commonly employed to 

expand formulations with customized release profiles, enabling controlled release of active 

pharmaceutical components over predetermined time frames. By regulating drug delivery 

throughout the gastrointestinal tract (GIT), these polymers progress therapeutic effectiveness and 

raise patient compliance. Tailored release profiles can be achieved by combining different 

Eudragit grades, exclusively Eudragit RL and Eudragit RS, which differ in permeability. Neutral 

ester dispersions like Eudragit NE and Eudragit NM supply sustained-release properties without 

the requirement for additional plasticizers. Collectively, these polymers enable cost-effective 

processing and therapeutically optimized dosage forms by proposing: Sustained and time-

controlled release of drugs, Reduced dosing frequency, Increased patient adherence, and 

Progressed manufacturing efficiency. A comparative summary of the distinguishing 

characteristics of selected Eudragit grades (RL, RS, NE, and NM) is shown in Table 2 (Evonik 

Industries, 2023).  

Eudragit for gastro-resistance and gastrointestinal (GI) targeting: Eudragit polymers are 

broadly employed in enteric formulations to protect active pharmaceutical ingredients (APIs) 

from degradation in the gastric environment and to raise therapeutic effectiveness. The most 

commonly applied grades for this purpose are Eudragit L and Eudragit S, which serve as coating 

polymers enabling drug targeting to particular regions of the gastrointestinal tract. These anionic 

methacrylate copolymers exhibit pH-dependent solubility: they stay intact in gastric fluid and 

dissolve at increasing pH levels, thereby supplying controlled and site-specific drug release 

(Chandak & Prasad Verma, 2010). A further advantage of these polymers is their capability to be 
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combined in different proportions, permitting modulation of the dissolution threshold and 

enabling accurate targeting within the intestine or colon. 

 

Table 2. Distinguishing characteristics of selected Eudragit grades (RL, RS, NE, and NM) 

Trade Name 
Tg 

(°C) 
Form / Permeability Physical Properties 

Eudragit RL 

100 

63 ± 

5 

Granules / High 

permeability 

Colorless, clear to cloudy granules; faint 

amine-like odor 

Eudragit RL 

PO 

63 ± 

5 
Powder / High permeability White powder; faint amine-like odor 

Eudragit RL 

30 D 
55 

30% aqueous dispersion / 

High permeability 

Milky-white, low-viscosity liquid; faint 

odor 

Eudragit RL 

12.5 
— 

12.5% organic solution / 

High permeability 

Light yellow, low-viscosity liquid; clear to 

slightly cloudy with solvent odor 

Eudragit RS 

100 
65 

Granules / Low 

permeability 

Colorless, clear to cloudy granules; faint 

amine-like odor 

Eudragit RS 

PO 
65 Powder / Low permeability White powder; faint amine-like odor 

Eudragit RS 

30 D 
55 

30% aqueous dispersion / 

Low permeability 

Milky-white, low-viscosity liquid; faint 

odor 

Eudragit RS 

12.5 
— 

12.5% organic solution / 

Low permeability 

Light yellow, low-viscosity liquid; clear to 

slightly cloudy with solvent odor 

Eudragit NE 

30 D 
–8 

30% aqueous dispersion / 

Low permeability 

Milky-white, low-viscosity liquid; faint 

odor 

Eudragit NE 

40 D 
–8 

40% aqueous dispersion / 

Low permeability 

Milky-white, low-viscosity liquid; faint 

odor 

Eudragit NM 

30 D 
11 

30% aqueous dispersion / 

Low permeability 

Milky-white, low-viscosity liquid; faint 

odor 

 

The benefits of Eudragit for enteric coatings include: pH-dependent drug release tailored to 

GI physiology, Progressed stability of acid-sensitive active components, Increased therapeutic 

effectiveness via site-specific release, Excellent storage stability, and Colon-aimed delivery 

(especially with Eudragit S grades). Structurally, Eudragit L and S are copolymers derived from 

methacrylic acid and ethyl acrylate, with a weight-average molar mass of almost 125,000 g/mol 

(Evonik Industries, 2023). These materials are available as white, free-flowing powders or 

dispersions, proposing versatile processing and formulation flexibility. Eudragit L grades (e.g., L 

100, L 12.5, L 30D-55, and L 100-55) dissolve at lower intestinal pH values (~5.5–6.0), making 

them suitable for drug release in the duodenum and jejunum. In contrast, Eudragit S grades (e.g., 

S 100, S 12.5) dissolve only at higher pH (~7.0), thereby enabling colon targeting. The 

distinguishing characteristics of selected Eudragit L and S grades are summarized in Table 3. 
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Table 3. Distinguishing characteristics of Eudragit L and Eudragit S grades 

Trade 

Name 

Tg 

(°C) 
Form 

Target GI 

Region 

Dissolution 

Behavior 
Physical Properties 

Eudragit L 

100 
>130 Powder Jejunum 

Dissolves 

above pH 6.0 
White powder; faint odor 

Eudragit L 

12.5 
>130 

12.5% organic 

solution 
Jejunum 

Dissolves 

above pH 6.0 

Colorless to slightly cloudy 

liquid; odor of isopropyl 

alcohol 

Eudragit L 

30D-55 
96 

30% aqueous 

dispersion 
Duodenum 

Dissolves 

above pH 5.5 

Milky-white, low-viscosity 

liquid; faint odor 

Eudragit L 

100-55 
96 Powder Duodenum 

Dissolves 

above pH 5.5 
White powder; faint odor 

Eudragit S 

100 
>130 Powder Colon 

Dissolves 

above pH 7.0 
White powder; faint odor 

Eudragit S 

12.5 
>130 

12.5% organic 

solution 
Colon 

Dissolves 

above pH 7.0 

Colorless to slightly cloudy 

liquid; odor of isopropyl 

alcohol 

 

Eudragit for moisture protection and taste masking: Eudragit polymers also perform a 

critical role in protective coatings, exclusively for increasing the stability of moisture- and light-

sensitive drug substances and progressing patient acceptability. Among these, Eudragit E grades 

are broadly employed due to their cationic nature, derived from dimethylaminoethyl methacrylate 

as the functional group (Bulja et al., 2017; Chandak & Prasad Verma, 2010). Eudragit E polymers 

supply multiple advantages: Moisture protection for sensitive APIs, Taste and odor masking to 

progress patient adherence, pH-dependent solubility, dissolving rapidly in gastric fluid (below pH 

5), Increased dosage form aesthetics, like smooth and glossy coatings, Cost-effective processing, 

since effective efficiency is achieved with thin, minimal coating layers, and progressed 

swallowability and gastrointestinal transit. These characteristics make Eudragit E exclusively 

suitable for oral dosage forms, especially chewable tablets, granules, and pediatric formulations. 

The primary grades include Eudragit E 100, Eudragit E 12.5, and Eudragit E PO, which differ 

mainly in form and physical characteristics. Their distinguishing properties are summarized in 

Table 4 (Evonik Industries, 2023). 

Eudragit polymers in drug delivery systems-ophthalmic drug delivery: One of the major 

challenges in ophthalmic drug delivery is achieving and holding a therapeutically effective drug 

concentration at the target site. This is restricted by different physiological and anatomical 

barriers, containing rapid tear turnover, restricted corneal permeability, and the protective blink 

reflex, all of which meaningfully reduce drug residence time and absorption (Ch’Ng et al., 1985). 

Consequently, conventional eye drops typically demonstrate poor bioavailability, with less than 

10% of the administered dose reaching intraocular tissues (Farkouh et al., 2016). 
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Table 4. Distinguishing characteristics of Eudragit E grades 

Trade name Form Physical properties 

Eudragit E 

100 
Granules 

Colorless to yellowish granules with a characteristic amine-

like odor 

Eudragit E 

12.5 

12.5% organic 

solution 

Light yellow, low-viscosity liquid; clear to slightly cloudy; 

characteristic solvent odor 

Eudragit E 

PO 
Powder White powder with a characteristic amine-like odor 

 

Eudragit (EUD) polymers exhibit favorable characteristics for ophthalmic formulations, like 

biocompatibility, non-toxicity, cationic charge, and the capability to supply sustained and 

controlled release, making them exclusively suitable for overcoming ocular delivery challenges 

(Harris & Robinson, 1992; Khopade & Jain, 1995). Ana Rita et al. (2007) expanded ocular drug 

delivery systems for acetazolamide applying Eudragit RS 100 and RL 100 via compressed anti-

solvent technology. The consequencing microparticles exhibited a slower release rate compared 

to conventional drug formulations, with diffusion being the primary release mechanism and 

polymer swelling further participating to drug transport (Duarte et al., 2007). Similarly, Verma et 

al. (2013) formulated acetazolamide-loaded Eudragit RL 100 nanoparticles via a 

nanoprecipitation method. This system meaningfully progressed ocular bioavailability and 

extended the release duration of the drug. In another study, Zhang et al. (2014) investigated 

genistein-loaded nanostructured lipid carriers (GEN-NLC) coated with cationic Eudragit RS 100 

applying melt-emulsification and surface adsorption techniques. The Eudragit-coated GEN-NLC 

demonstrated extended precorneal residence, increased corneal penetration, and progressed 

pharmacological effectiveness compared to uncoated carriers. These results highlight the 

potential of Eudragit-based surface modifications for increasing drug retention, absorption, and 

therapeutic outcomes in ophthalmic drug delivery (Mortazavi et al., 2005; Zhang et al., 2014). 

Buccal and sublingual drug delivery: The buccal and sublingual mucosae propose 

advantageous routes for systemic drug delivery due to their rich vascularization, avoidance of 

hepatic first-pass metabolism, and potential for either rapid or sustained drug release, depending 

on the formulation plan (Narang & Sharma, 2011). The permeability of the buccal mucosa is 

estimated to be 4–4000 times higher than that of the skin. Sublingual administration permits for 

rapid absorption and progressed bioavailability of small-molecule drugs; however, it is less 

suitable for sustained-release formulations. In contrast, the buccal mucosa demonstrates lower 

permeability but is more appropriate for sustained-release systems. As a result, buccal delivery 

has emerged as a hopeful route for the administration of peptide-based drugs with low molecular 

weight, high potency, and long biological half-life (Harris & Robinson, 1992; Mohammadabadi 
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& Mozafari, 2018). The relative permeability of oral mucosae typically decreases in the 

subsequent order: sublingual > buccal > palatal (Ch’Ng et al., 1985). At physiological pH, mucus 

exhibits a negative charge due to sialic acid and sulfate residues, which participates to 

mucoadhesion. In this environment, mucus forms a cohesive gel that adheres to epithelial surfaces 

(Ali et al., 1998). Consequently, bioadhesive polymers are broadly applied in buccal drug delivery 

systems. Such polymers have long been applied in dentistry and surgery for adhesion to both hard 

and soft tissues. An optimal buccal film should possess flexibility, elasticity, softness, and 

mechanical strength to withstand oral activities. Additionally, it must exhibit strong 

mucoadhesive properties to stay in place for the intended duration, while limiting swelling to 

avoid discomfort. Thus, the mechanical, bioadhesive, and swelling characteristics of buccal films 

are key determinants of their efficiency (Nair & Chien, 1996). Both buccal and sublingual routes 

are broadly utilized for systemic therapy due to their transmucosal permeability (Hoogstraate et 

al., 1996). The sublingual mucosa, being thinner, more permeable, and more vascularized than 

the buccal mucosa, supplies a rapid onset of action, making it suitable for drugs requiring quick 

therapeutic effects (Giri et al., 2010). Conversely, the buccal mucosa, although less permeable, 

proposes a broad, stable surface suitable for the utilization of retentive systems, thereby enabling 

extended and controlled drug release (Madhav et al., 2009; Shakya et al., 2011). Diarra et al. 

(2003) expanded an intra-buccal controlled-release system for fluoride delivery by formulating 

tablets with a granular matrix composed of hydroxyapatite, Eudragit®, and ethyl cellulose. This 

matrix design achieved sufficiently high local concentrations for therapeutic effectiveness while 

minimizing systemic side effects. 

Oral drug delivery: Oral administration stays the most preferred route of drug delivery due 

to its convenience and high patient compliance. However, it is often restricted by variable plasma 

concentrations, frequent dosing requirements, and gastrointestinal side effects, exclusively with 

poorly tolerated or rapidly metabolized drugs. The incorporation of Eudragit (EUD) polymers 

into oral dosage forms proposes effective solutions to these challenges by enabling controlled and 

sustained drug release. Methacrylate-based EUD polymers, especially the RS and RL grades, are 

broadly applied in oral drug delivery systems due to their adjustable permeability and capability 

to form durable, pH-independent films. For example, Badir et al. expanded vancomycin-loaded 

nanoparticles applying Eudragit RS via a double-emulsion solvent evaporation method. The 

formulation demonstrated a biphasic release profile, consisting of an initial burst followed by 

extended release over 24 hours, making it suitable for sustained oral delivery of peptide antibiotics 

(Heidarpour et al., 2011; Delf Loveymi et al., 2012). Similarly, Cetin et al. (2010) formulated 

diclofenac sodium nanoparticles with Eudragit L100 and poly(lactic-co-glycolic acid) (PLGA), 

achieving controlled release and reducing the gastrointestinal adverse effects commonly related 
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to NSAID therapy. Eudragit has also been applied to raise the solubility of poorly water-soluble 

compounds. Tang et al. (2011) prepared Eudragit E100 nanoparticles via nanoprecipitation to 

progress the oral bioavailability of flavonoids like genistein. Their system achieved a two-fold 

improve in drug release compared to conventional capsules. In another study, Momoh et al. (2014) 

generated diclofenac sodium microspheres with Eudragit RS100 and RL100 applying solvent 

evaporation, achieving sustained release while reducing mucosal irritation related to extended 

NSAID therapy. Collectively, these investigations demonstrate the versatility of Eudragit 

polymers in improving drug release kinetics, progressing bioavailability, and reducing 

gastrointestinal side effects, making them worth excipients in oral formulations. 

Colon drug delivery: The colon represents a unique target for drug delivery, exclusively for 

the treatment of local diseases (e.g., inflammatory bowel disease) or for systemic delivery of drugs 

that degrade in the upper gastrointestinal tract. Eudragit polymers, exclusively the pH-sensitive 

grades that dissolve above pH 7, are broadly employed in colonic drug delivery. Quinteros et al. 

(2010) expanded a mesalamine delivery system by coating tablet cores with dual protective layers. 

The inner layer, composed of chitosan, shielded the drug from premature release in the small 

intestine, while the outer layer of Eudragit L100 prevented degradation of the chitosan-coated 

core until reaching the colon, where enzymatic activity-initiated drug release. Similarly, Lee et 

al. (2012) investigated thiolated Eudragit microspheres for oral vaccine delivery against 

enterotoxigenic Escherichia coli. Their outcomes demonstrated the capability of the system to 

stimulate both systemic and mucosal immunity, emphasizing its potential for oral vaccine 

utilizations. Eudragit has also been investigated in parasitic infection management. Dea-Ayuela 

et al. (2006) prepared Eudragit L100 microcapsules via spray drying for oral vaccination against 

Trichinella spiralis. These microcapsules supplied effective antigen protection and delivery, 

supporting their potential in oral immunization strategies. Voltan et al. (2007) later designed core–

shell nanoparticles consisting of a poly (methyl methacrylate) (PMMA) core coated with Eudragit 

L100/55 via emulsion polymerization. These anionic nanoparticles proposed a versatile platform 

for protein adsorption, presenting a hopeful approach for protein-based oral vaccines. Together, 

these results underscore the role of Eudragit-based formulations in aimed colonic delivery, 

vaccine expansion, and parasite management, demonstrating their importance in both therapeutic 

and prophylactic utilizations. 

Transdermal drug delivery: Eudragit polymers have also been investigated in transdermal 

systems to raise drug permeation and skin adherence. Małolepsza-Jarmołowska et al. (2003) 

evaluated the mechanical properties of cast Eudragit E100 films modified with cohesiveness 

promoters (succinic or citric acid) and triacetin as a plasticizer. The consequencing films were 
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elastic, self-adhesive, transparent, and pale yellow in color, exhibiting strong adherence to the 

skin without wrinkling. Drug release from the system followed erosion-controlled kinetics of the 

hydrophilic Eudragit E100 polymer, consequence in complete drug release within 20 minutes. 

These results highlight the potential of Eudragit-based films as fast-acting transdermal delivery 

systems. 

Vaginal drug delivery: Vaginal drug delivery proposes advantages for localized therapy, 

but challenges like acidic pH, enzymatic activity, and mucosal instability often hinder effective 

drug transport. Eudragit polymers have shown promise in overcoming these barriers. Mulligan 

(1993) demonstrated that Eudragit RS100 suppositories including sildenafil supplied adequate 

release profiles. Similarly, Kadian and Harikumar (2009) formulated intravaginal tablets 

combining lactic acid and Eudragit E100 (1:1 ratio), which dissolved into a gel at physiological 

vaginal pH (3.8–4.4). These gels proposed an acid reserve capable of neutralizing excess 

alkalinity, thereby progressing treatment of acute infections. More progressive attitudes have 

employed nanotechnology. Yoo et al. (2011) prepared biocompatible pH-sensitive nanoparticles 

applying Eudragit S100 via a modified quasi-emulsion solvent diffusion method. Encapsulating 

fluorescent probes (sodium fluorescein or nile red), these nanoparticles protected labile 

compounds from acidic degradation and achieved therapeutically relevant concentrations within 

the vaginal mucosa. The authors concluded that Eudragit-based pH-sensitive nanoparticles are 

hopeful carriers for vaginal delivery of microbicides, peptides, and protein therapeutics. 

Gene delivery: Gene therapy represents a rapidly advancing field with potential utilizations 

in both inherited and acquired disorders. Eudragit-based nanoparticles have been investigated as 

non-viral carriers for nucleic acids due to their biocompatibility and capability to protect genetic 

cargo. Wang et al. (2003) synthesized nanoparticles from PLGA blended with Eudragit E100, 

successfully delivering plasmid DNA encoding mouse interleukin-10 and preventing autoimmune 

diabetes in vivo. Other investigations have announced the applying of Eudragit L100/55 

nanoparticles as anionic carriers for protein surface adsorption, proposing a versatile platform for 

DNA and protein-based delivery while holding structural integrity essential for immunogenicity 

(Voltan et al., 2007). In addition, nanoparticles prepared with Eudragit RL100 and RS100 have 

been employed for the effective administration of antisense oligodeoxynucleotides, further 

affirming the role of Eudragit polymers in gene silencing and therapy. 

Vaccine delivery: Eudragit polymers are broadly utilized in oral and mucosal vaccine 

delivery owing to their pH sensitivity and protective properties. Lee et al. (2012) investigated 

thiolated Eudragit microspheres for oral immunization against enterotoxigenic Escherichia coli. 

The system successfully induced both systemic and mucosal immunity, proposing its potential as 

a vaccine carrier. Similarly, Dea-Ayuela et al. (2006) expanded Eudragit L100 microcapsules via 
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spray drying for oral vaccination against the nematode Trichinella spiralis. These microcapsules 

demonstrated protective effects and supported antigen delivery in harsh gastrointestinal 

situations. Expanding on this, Voltan et al. (2007) designed core–shell poly(methyl methacrylate) 

(PMMA) nanoparticles with an outer shell of Eudragit L100/55. The anionic nanoparticles 

supplied a versatile platform for protein adsorption, establishing them as hopeful tools for oral 

and mucosal vaccine delivery. 

 

Hot-melt extrusion (HME) 

The hot-melt extrusion (HME) process relies on an extruder comprising a motor-driven 

screw housed within a modular barrel, heating elements distributed across different barrel zones, 

and a shaping die at the outlet. The screw geometry can be configured to convey, compress, and 

homogenize raw materials effectively. Heat is generated both externally, via barrel heaters, and 

internally, via shear forces, consequencing in the melting of polymer carriers and active 

pharmaceutical ingredients (APIs). The rotating screw not only facilitates forward movement of 

the materials but also ensures uniform mixing. Key process parameters, like barrel temperature, 

screw speed (RPM), feed rate, die pressure, and vacuum level for devolatilization—are carefully 

monitored and controlled. These parameters are reproducible, scalable, and adjustable, permitting 

for accurate modulation of the terminal product’s properties. Figure 2 shows a typical modular 

hot-melt extruder, emphasizing its separate functional zones. HME has gained meaningful 

attention in pharmaceutical manufacturing due to its capability to raise drug solubility and 

bioavailability, as well as to enable the expansion of innovative drug delivery systems. Additional 

advantages include continuous processing, elimination of solvents, and broad compatibility with 

diverse excipients and APIs (Patil et al., 2016). 

Types of screw extruders: In pharmaceutical hot-melt extrusion (HME), screw extruders 

are classified based on their configuration and mechanical action, with each design tailored to 

particular processing requirements and regulatory standards for dosage form manufacturing. The 

most common types include single-screw extruders (SSEs), twin-screw extruders (TSEs), and 

multi-screw extruders (MSEs). Each type proposes separate advantages in terms of mixing 

efficiency, shear control, and processing versatility. Single-screw extruders (SSEs): Single-

screw extruders are the earliest and most broadly established type of extruder, valued for their 

mechanical simplicity, low maintenance, and cost efficiency. Since their introduction in the late 

19th century, SSEs have undergone relatively restricted technological expansion (Johnson et al., 

2025). An SSE consists of a continuously rotating screw within a barrel, capable of producing 

high-quality molten material and generating stable pressure for consistent throughput. Within an 
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SSE, operations like feeding, conveying, melting, devolatilization, pumping, shaping, and light 

mixing can be achieved. 

 

 

Figure 2. A schematic diagram of a typical hot-melt extruder 

 

Raw materials are introduced via a feed hopper and subsequently transported along the barrel 

via the rotating flighted screw. The output rate is directly impressed by the screw’s revolutions 

per minute (Crowley et al., 2007). Due to their essential features—low cost, simplicity, and 

reliable efficiency,SSEs stay broadly applied in HME for the production of extruded products, 

although they are gradually being supplanted by more versatile technologies (Ghebre-Sellassie et 

al., 2003). 

Twin-screw extruders (TSEs): Twin-screw extruders, first expanded in the 1930s, were 

designed to overcome the limitations of single-screw systems by integrating multiple mechanical 

tasks into a continuous operation (Crowley et al., 2007). A TSE features two parallel, rotating 

agitator assemblies mounted on shafts. This configuration permits for different screw designs and 

operating situations across the extruder’s zones—from material feeding via the hopper, to 

melting, mixing, and ultimately conveying the product to the metered pumping zone (Crowley et 

al., 2007; Collins et al., 2021). TSEs can be classified as either co-rotating (screws rotating in the 

same direction) or counter-rotating (screws rotating in opposite directions). In pharmaceutical 

HME, TSEs are preferred due to their self-cleaning capability, increased mixing efficiency, 

reduced residence time, and overall process flexibility [68]. These features make TSEs 
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exclusively effective for manufacturing amorphous solid dispersions, controlled-release matrices, 

and formulations involving thermolabile APIs (Crowley et al., 2007; Breitenbach, 2002). 

Multi-Screw extruders (MSEs): Multi-screw extruders (MSEs), an emerging class of 

progressive extrusion technology, utilize more than two screws and are applied in the processing 

of complex pharmaceutical formulations. Depending on the design, screws may be arranged in a 

linear configuration (three or five screws) or in a circular pattern (six or eight screws) 

(Kohlgrüber, 2007). MSEs supply superior distributive mixing compared to SSEs and need lower 

shear energy, which reduces the risk of thermal degradation in heat-sensitive materials. Positive 

displacement flow in intermeshing screw regions ensures uniform melt quality, making MSEs 

highly suitable for formulations involving viscous polymers, high drug loadings, or continuous 

twin systems (Loukus et al., 2004). 

HME in pharmaceutical utilizations and study: Hot-melt extrusion (HME) technology 

has proven to be transformative in pharmaceutical manufacturing, owing to its capability to 

integrate multiple processing steps,like blending, melting, homogenizing, shaping, and 

devolatilization—into a single continuous operation. Beyond its technical merits, HME aligns 

well with regulatory frameworks, exclusively via its compatibility with Quality by Design (QbD) 

principles and Process Analytical Technology (PAT) tools, in line with U.S. FDA guidance on 

modern pharmaceutical manufacturing (Feng & Zhang, 2018; Martin, 2013). Originally expanded 

and broadly applied in the food and plastics industries, HME has increasingly been adapted for 

pharmaceutical utilizations, where it participates to progressed solubility, controlled release 

kinetics, and the expansion of personalized dosage forms. One of its most meaningful utilizations 

is the preparation of solid dispersions, especially for poorly water-soluble active pharmaceutical 

ingredients (APIs), like ritonavir, troglitazone, and suvorexant (Repka et al., 2018; Zhang et al., 

2017). A solid dispersion is defined as a molecular-level distribution of an API within a 

hydrophilic carrier matrix, either crystalline or amorphous, that raises dissolution and 

bioavailability (Martin, 2013; Patil et al., 2016; Zarrabi et al., 2020). The shear forces and thermal 

energy generated through HME promote molecular dispersion, thereby converting APIs into 

amorphous solid dispersions with markedly progressed solubility and oral bioavailability, 

exclusively for Biopharmaceutics Classification System (BCS) Class II and IV drugs. 

Furthermore, HME permits the design of sustained, controlled, and aimed-release drug delivery 

systems by tailoring formulation conformation, screw configuration, and processing situations 

(Repka et al., 2008). For example, sustained-release lipid matrices, like those incorporating 

diclofenac sodium, have been expanded via HME and subsequently compressed into tablets 

(Vithani et al., 2013). A notable example of site-specific drug delivery via HME is the work of 
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Bruce et al., who prepared colon-aimed tablets of 5-aminosalicylic acid applying Eudragit S100 

and a methacrylic acid–methyl methacrylate copolymer (1:2). Incorporation of the plasticizer 

triethyl citrate (TEC) reduced the glass transition temperature (Tg), thereby progressing 

processing situations, while also affecting drug release kinetics via leaching effects. Additionally, 

the inclusion of citric acid as a pH modifier regulated drug release by lowering the 

microenvironmental pH, thereby delaying polymer ionization and dissolution onset. Beyond 

increasing solubility and enabling modified release, HME also proposes advantages in taste 

masking, a critical factor in pediatric and geriatric formulations where palatability directly 

impresses patient adherence. This is often achieved by incorporating taste-masking agents like 

Eudragit E-PO, which suppress bitterness by preventing drug release in saliva and permitting 

dissolution only at the lower pH (<5) of the stomach (Keating et al., 2018). In summary, HME 

represents a versatile, multipurpose platform in pharmaceutical product expansion, with 

utilizations spanning solubility enhancement, controlled and aimed delivery, taste masking, and 

dose reduction. Its inherent adaptability to continuous manufacturing further strengthens its role 

in modern drug expansion pipelines. As a scalable, regulatory-compliant, and future-ready 

technology, HME continues to gain prominence as a cornerstone of progressive pharmaceutical 

manufacturing. 

 

Eudragit in hot-melt extrusion (HME)-based formulations 

Hot-melt extrusion (HME) has evolved into a transformative technology in modern 

pharmaceutical manufacturing, enabling the processing of thermoplastic polymers and active 

pharmaceutical ingredients (APIs) into dosage forms with uniform size and controlled-release 

properties. Among the most broadly applied excipients in HME are Eudragit (EUD) polymers, 

which are highly valued for their tunable pH-dependent solubility, excellent melt processability, 

and capability to stabilize amorphous drug dispersions (Repka et al., 2007). Eudragit polymers 

are incorporated in HME due to their thermoplastic behavior, compatibility with plasticizers, and 

capacity to form stable solid dispersions and amorphous drug forms (Repka et al., 2007). Their 

functionality spans matrix formation, taste masking, and aimed delivery, depending on their 

chemical structure and pH solubility profile (Ghebre-Sellassie et al., 2003). Common grades 

include: Eudragit RL and RS (water-insoluble, pH-independent): applied in sustained-release 

systems, Eudragit L100 and S100 (pH-dependent enteric): applied in delayed-release and colon-

aimed systems, and Eudragit EPO: primarily applied in taste masking and immediate-release 

formulations (Baumann et al., 2021). These polymers are typically processed at 100–160 °C, with 

plasticizers like triethyl citrate (TEC) and polyethylene glycol (PEG) aiding extrusion by lowering 

the processing temperature. A broad body of study shows the versatility of Eudragit in HME: 
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Sustained release; Dos Santos et al. (2021) demonstrated matrix-type formulations with Eudragit 

RL and RS, chosen for their low permeability and pH-independent solubility. Applying a twin-

screw extruder, drug release was extended over 9–12 hours, affirming their suitability for HME 

(Jaloud & Alqahtani, 2021). Immediate vs. delayed release: Gupta et al. (2015) systematically 

reviewed Eudragit-based copolymers like EPO and L100-55. EPO effectively masked bitterness 

of APIs, while L100-55 served as an enteric matrix for delayed release. Extrusion at 110–130 °C, 

followed by SEM and DSC analysis, affirmed amorphization and smooth extrudate morphology 

(Gioumouxouzis et al., 2018; Nikam et al., 2023). Colon-aimed systems: Singh et al. (2015) and 

Andrés Real et al. (2022) emphasized the role of Eudragit L100-55 and S100 in colon-specific 

and enteric drug delivery. Yurtsal & Hasdemir (2022) demonstrated stable HME filaments 

applying Eudragit S100 with TEC, showing no release at gastric pH and >90% release at colonic 

pH. Amorphization and solubility enhancement: Jablan & Jug (2015) showed that Eudragit L100 

and RS100 completely converted crystalline drugs to amorphous forms via HME, with 

meaningful improvements in solubility and bioavailability. Smart and pulsatile delivery: Tan et 

al. (2018) reviewed Eudragit’s role in pH-triggered release (e.g., L100 at pH >6, S100 at pH >7) 

and discussed plasticizer effects on filament flexibility and drug distribution. More recently, 

Gaurkhede et al. (2024) designed a capsule structure applying Eudragit L100 as an outer shell, 

engineered with a “lock-and-key” pulsatile release mechanism. This design enabled rapid 

intestinal disintegration while protecting the drug in the stomach. Hydrophilic drug systems: 

Shojaie et al. (2023) announced the applying of Eudragit RL PO as a matrix former in sustained-

release extrudates of hydrophilic drugs, with TEC enabling lower-temperature processing. 

Extended release was holded for over 8 hours (Khodaverdi et al., 2012). Collectively, these 

investigations underscore the multifunctional role of Eudragit polymers in HME, spanning 

immediate release (EPO), sustained release (RL/RS), and aimed delivery (L100/S100). Blending 

of RL/RS grades permits accurate control over matrix permeability, while pH-sensitive polymers 

(e.g., L100-55, S100) permit site-specific release in the intestine or colon (Crowley et al., 2007). 

Thus, Eudragit stays one of the most versatile and broadly applied polymer families in HME, 

supporting the expansion of customized, stable, and patient-centric dosage forms. A comparative 

overview of pharmaceutical case studies involving Eudragit in HME is shown in Table 5. 

Challenges and Considerations in Applying Eudragit with HME: In spite of their 

versatility and widespread utilization in pharmaceutical HME, Eudragit polymers show different 

formulation and processing challenges that must be carefully addressed through product 

expansion. One critical limitation is the narrow thermal processing window of particular grades. 

For example, Eudragit EPO, with a glass transition temperature (Tg) of ~42–45 °C, is prone to 
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thermal degradation or discoloration if extruded outside its optimal range (Nikam et al., 2023). 

This meaningfully restricts processing latitude and necessitates accurate temperature control to 

hold polymer integrity and drug stability. Another challenge is drug–polymer miscibility, 

exclusively in high-dose formulations with poorly soluble or thermally sensitive APIs. Partial 

miscibility may lead to phase separation, drug crystallization, and unpredictable release kinetics. 

 

Table 5. Pharmaceutical-grade Eudragit polymers applied in HME-based filaments 

Polymer Manufacturer Drug Plasticizer Outcome Reference 

Eudragit 
E PO 

– Felodipine PEG 4000 
Taste 

masking 
Alhijjaj et al., 

2016 

 – 
5-ASA, Captopril, 

Prednisolone, 
Theophylline 

Triethyl 
citrate 

Immediate 
release 

Sadia et al., 2016 

 Evonik 
Industries 

Warfarin 
Triethyl 
citrate 

progressed 
stability 

Arafat et al., 2018 

Eudragit 
E 

– Theophylline 
Triethyl 
citrate 

Taste 
masking 

Pietrzak et al., 
2015 

Eudragit 
RL PO 

– Theophylline 
Stearic acid, 
PEG 4000 

Sustained 
release 

Korte & 
Quodbach, 2018 

Eudragit 
R 

– Quinine 
Triethyl 
citrate 

Taste 
masking 

Kempin et al., 
2017 

Eudragit 
L100-55 

– 5-Fluorouracil 
Triethyl 
citrate 

Colon-
aimed 

delivery 

Gioumouxouzis 
et al., 2018 

Eudragit 
S100 

– 5-Fluorouracil 
Triethyl 
citrate 

pH-
triggered 
release 

Gioumouxouzis 
et al., 2018 

Eudragit 
S100 

– Dexamethasone 
Triethyl 
citrate 

Colon-
aimed 
release 

Zaid Alkilani et 
al., 2024 

Eudragit 
L100 

– Acetaminophen 
Triethyl 
citrate 

Sustained 
release 

J. Zhang et al., 
2017 

 

This issue is often exacerbated by the hydrophobic nature of some Eudragit grades (e.g., RS 

and RL), requiring specialized strategies like premixing with solubilizers or the applying of high-

shear extrusion zones to progress drug dispersion (Crowley et al., 2007). The role of plasticizers 

is also crucial. Agents like triethyl citrate (TEC), polyethylene glycol (PEG), and stearic acid are 

commonly incorporated to reduce Tg, facilitating extrusion at moderate temperatures. However, 

plasticizer levels must be carefully optimized. Insufficient or excessive concentrations can lead 

to mechanical weakness, excessive filament flexibility, or altered drug-release kinetics (Ghebre-

Sellassie et al., 2003). Furthermore, inappropriate levels can improve extrusion torque, leading to 

variability in throughput and improved strain on manufacturing equipment. In 3D printing 

utilizations, plasticizer content directly affects filament printability, feeding behavior, brittleness, 
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and dimensional fidelity through cooling (Fan et al., 2021). Moisture sensitivity and storage 

stability show additional concerns. For instance, Eudragit L100-55 is prone to moisture uptake, 

which may alter its dissolution characteristics and compromise pH-triggered release. Hence, 

proper packaging and storage situations are essential to hold the long-term efficiency of Eudragit-

based extrudates (Nikam et al., 2023). Eventually, scale-up and batch-to-batch reproducibility are 

meaningful considerations. Variability in processing parameters like temperature or screw speed 

can create fluctuations in torque, melt viscosity, or drug dispersion, potentially leading to non-

compliance with regulatory standards. To mitigate this, the applying of Process Analytical 

Technologies (PAT) and continuous monitoring is recommended to ensure consistent quality 

(Censi et al., 2018). When applied to 3D printing via fused deposition modeling (FDM), these 

challenges become even more critical. Factors like polymer viscosity, thermal degradation, or 

residual plasticizer levels directly impact printability, dimensional accuracy, and interlayer 

adhesion of printed dosage forms. For example, an imbalance in plasticizer concentration can 

result in brittle or overly soft filaments, leading to printing failures, nozzle clogging, or uneven 

drug distribution (Verstraete et al., 2018). 

In summary, these challenges highlight the necessity of rational formulation design, thorough 

material characterization, and process optimization when employing Eudragit polymers in HME-

based systems. 

 

Three-dimensional printing of pharmaceuticals 

In recent years, the scientific community has shown growing interest in additive 

manufacturing (AM), or three-dimensional (3D) printing, across diverse fields, containing 

pharmaceutics. 3D printing is an emerging technology that fabricates constructs via layer-by-layer 

deposition, enabling accurate spatial control over materials (Bhushan & Caspers, 2017; 

Gioumouxouzis et al., 2019; Pereira et al., 2020; Ursan et al., 2013). The process begins with the 

digital design of the construct applying computer-aided design (CAD) software. The model is 

then sliced into multiple layers, each represented by a numerical code that dictates the deposition 

pattern. When this code is uploaded to the printer, the nozzle executes the printing path along the 

x, y, and z axes with high precision (Ursan et al., 2013). Parameters like nozzle diameter, 

deposition speed, and material properties supply further control, enabling fine-tuning of the 

construct’s internal micro- and macro-architecture. This layer-by-layer precision affords different 

advantages over conventional manufacturing. Chief among them is the capability to fabricate 

personalized or on-request dosage forms, which are difficult to achieve with traditional attitudes 

(Liu et al., 2019; Nadernezhad et al., 2016). Patient-specific medicines—tailored in dose, release 
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rate, or dosage form—represent a cornerstone of future medicine, with potential benefits like 

reduced dosing frequency, lower treatment costs, and progressed therapeutic outcomes (BG et al., 

2023). In conventional pharmaceutical manufacturing, adjusting dose strength or improving 

release kinetics typically needs extensive formulation and process redevelopment. In contrast, 3D 

printing permits these modifications to be achieved by simply altering software design parameters 

or ink conformation (Alomari et al., 2015). For example, by customizing tablet geometry, 

porosity, or infill density, drug release kinetics can be finely tuned (Goyanes et al., 2015). Another 

major advantage is the capability to combine multiple APIs into a single dosage form, thereby 

reducing pill burden and increasing compliance—especially in elderly patients on polypharmacy 

regimens (Genina et al., 2017). Complex, multifunctional dosage forms can be fabricated by co-

depositing multiple drugs and excipients, applying functional coatings (Zhang et al., 2017), or 

incorporating micro- and nanoparticles for controlled release (Beck et al., 2017). Importantly, 3D 

printing also proposes high reproducibility compared with traditional manufacturing routes 

(Pardeike et al., 2011). Perhaps the most transformative aspect of 3D printing is its capability to 

place the patient at the center of drug manufacturing, shifting from a “one-size-fits-all” model to 

patient-centric medicines (Kjar & Huang, 2019). Among numerous utilizations, the oral solid 

dosage form (OSD) has demonstrated the greatest potential. A landmark moment occurred in 

2015, when the U.S. Food and Drug Administration (FDA) approved the first 3D-printed drug 

product, SPRITAM® (levetiracetam)—an orally disintegrating tablet manufactured applying 

ZipDose® technology (Aprecia Pharmaceuticals, Langhorne, PA, USA) (Wen-Kai et al., 2018). 

Multiple 3D printing techniques have been investigated in pharmaceutical manufacturing, 

containing: Powder bed binding, Photopolymerization, Inkjet printing, and Extrusion-based 

printing (Wang et al., 2023). Each has unique benefits and limitations. For example, high printing 

temperatures needed in certain extrusion-based methods may create API degradation, while the 

conversion of pharmaceutical excipients into printable inks stays a meaningful barrier for many 

formulations (Fuenmayor et al., 2019; Trenfield et al., 2018). Among these, fused deposition 

modeling (FDM) is currently the most broadly applied in pharmaceutics due to its simplicity, 

availability, and cost-effectiveness (Chai et al., 2017). In FDM, the dosage form is digitally 

designed applying CAD software and converted into a standard tessellation language (STL) file, 

which directs the printer. The printer is supplied with a drug-loaded thermoplastic filament, 

typically prepared via hot-melt extrusion (HME), which is heated, extruded, and deposited layer-

by-layer to form the terminal three-dimensional structure (Goyanes et al., 2016; Ursan et al., 

2013). 
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Types of 3D printing technologies 

3D printing, also known as additive manufacturing (AM), is rapidly gaining recognition as 

a cutting-edge technology for fabricating complex structures across multiple fields, containing 

pharmaceutics. These techniques build three-dimensional objects by selectively depositing or 

solidifying material in a layer-by-layer manner. Figure 3 shows a schematic overview of the most 

broadly applied 3D printing technologies with potential in pharmaceuticals, containing material 

extrusion, material jetting, binder jetting, selective laser sintering (SLS), and stereolithography 

(SLA) (Gittard et al., 2011; Huang et al., 2015; Vorndran et al., 2010). 

Material extrusion: Extrusion-based printing is among the most prevalent and cost-

effective AM techniques. Two major methods are employed: semisolid extrusion and fused 

deposition modeling (FDM). In both cases, the material is continuously extruded via a nozzle 

while the nozzle and/or build platform moves in the x, y, and z axes to create the predesigned 

geometry (Vithani et al., 2018). Semisolid extrusion permits the applying of diverse materials, 

containing printing inks, drugs, proteins, and viable cells (bioprinting). Extrusion can be achieved 

by mechanical or pneumatic forces, often assisted by heat (Ahn et al., 2015). The rheological 

characteristics of the inks are crucial: very viscous inks may create irregular extrusion, while low-

viscosity inks may compromise resolution and mechanical stability. Ideally, inks exhibit shear-

thinning behavior, reducing viscosity through extrusion and recovering viscosity immediately 

after deposition, thereby preserving shape fidelity (Vithani et al., 2018). Solidification occurs via 

chemical or physical processes, containing photo-crosslinking by UV exposure or co-deposition 

of crosslinking agents (Ahn et al., 2015). Fused deposition modeling (FDM) is broadly applied in 

pharmaceutical study due to its simplicity and cost-effectiveness. It typically employs drug-

loaded thermoplastic filaments, often prepared by hot-melt extrusion (HME), which are melted 

and extruded layer-by-layer (Vithani et al., 2018). The resolution of FDM is constrained by nozzle 

size, usually ~400 μm. Semisolid extrusion generally proposes lower resolution due to ink 

spreading. However, hybrid electrospinning-based extrusion systems can achieve filament 

diameters as fine as 10 μm, representing the highest resolution extrusion-based approach currently 

available (Vithani et al., 2018). 

Material jetting: Material jetting, also referred to as inkjet 3D printing, is analogous to 

conventional 2D inkjet printing. In this method, low-viscosity fluids are dispensed as droplets of 

controlled volume onto a substrate, with the print head moving in the x, y, and z axes to build 3D 

structures. Two primary types exist based on droplet ejection force: thermal inkjet and acoustic 

inkjet (Bhushan & Caspers, 2017). Post-printing crosslinking is essential, and may occur via ionic, 

thermal, photo, or pH-dependent processes (Hospodiuk et al., 2017). A meaningful advantage is 
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the capability to simultaneously print multiple materials, even those with separate 

physicochemical properties, making the technology attractive for drug formulations and 

bioprinting of viable cells (Bhattacharjee et al., 2016; Hospodiuk et al., 2017). However, technical 

challenges stay. Droplets often spread prior to complete crosslinking, reducing resolution. The 

sharpest features are usually achieved when printed parallel to the jetting direction (Bhushan & 

Caspers, 2017). Print fidelity and resolution are strongly impressed by droplet size, fluid rheology, 

and print speed, requiring careful optimization. 

Binder jetting: Unlike material jetting, binder jetting utilizes a liquid binder to selectively 

fuse regions of a powder bed. Each layer is created by spreading powder over the build surface, 

followed by selective deposition of binder in the desired geometry. The powder bed is then 

lowered, fresh powder spread, and the process repeated until the terminal object is complete 

(Bhushan & Caspers, 2017). Advantages include: No requirement for sacrificial supports, since 

the surrounding powder bed stabilizes the part through fabrication, Compatibility with a broad 

range of materials, containing polymers, metals, and ceramics, often at room temperature, making 

it suitable for heat-sensitive APIs (Ngo et al., 2018), and the capability to create highly porous 

structures, beneficial for utilizations like controlled-release drug delivery. However, parts 

generated by binder jetting usually need post-processing (e.g., chemical treatment or sintering) to 

raise mechanical properties. Resolution depends on powder size, with features as fine as 50 μm 

achievable (Bhushan & Caspers, 2017). 

Selective laser sintering (SLS): Selective laser sintering (SLS) shares similarities with binder 

jetting; however, instead of applying a liquid binder, a laser beam is employed to selectively fuse 

powder particles. This mechanism imposes restrictions on the types of materials that can be 

processed. While thermoplastic polymers are most often applied in SLS for biomedical 

utilizations, metals and ceramics stay broadly applied in other fields (Mazzoli, 2013). The particle 

size of the feedstock performs a crucial role in identifying the terminal print’s mechanical 

properties, particle spreading efficiency, and feature resolution. Careful optimization of powder 

particle size is therefore essential (Dadbakhsh et al., 2016). Material characteristics also directly 

impress the achievable resolution. Compared with other 3D printing methods, SLS is 

distinguished as a high-resolution technique, capable of producing features as fine as 30 µm 

(Regenfuss et al., 2007), although some reports describe resolutions closer to 100 µm (Goyanes 

et al., 2016). Similar to binder jetting, SLS-fabricated objects are typically porous and often need 

post-processing to raise mechanical strength and surface smoothness. In spite of these limitations, 

SLS proposes notable advantages: it generally needs no support structures, is relatively rapid, and 

is attended cost-effective. 
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Figure 3. Typical mechanisms of additive manufacturing (AM). Layer-by-layer material 

deposition is the defining principle of AM techniques. (A) Material extrusion: thermoplastic 

materials are typically extruded via a heated nozzle, although semisolid materials may also 

be deposited applying mechanical or pneumatic systems. (B) Material jetting: droplets of 

the entire printing material are dispensed applying inkjet-based print heads. (C) Binder 

jetting: a liquid binder is selectively deposited via an inkjet nozzle onto a powder bed, with 

the surrounding powder providing support and eliminating the requirement for sacrificial 

structures. (D) Selective laser sintering (SLS): a laser beam selectively fuses regions of the 

powder bed to build the 3D structure. (E) Stereolithography (SLA): liquid resin in a vat is 

polymerized layer by layer by a directed light source to form the terminal part. Adapted 

from Fuenmayor et al. (2019) and Trenfield et al. (2018). 

 

Stereolithography (SLA): Stereolithography (SLA) is the earliest and most established 

form of additive manufacturing (Huang et al., 2020). Its principle is derived from 



Altalib, 2025 

369 

Agricultural Biotechnology Journal;      Print ISSN: 2228-6705,      Electronic ISSN: 2228-6500 

 

photolithography and is based on the interaction of light with photopolymerizable resins. In SLA, 

a vat of liquid resin is selectively exposed to a light source, which cures the resin layer by layer 

based on the predefined design. Two primary configurations are employed. In the bottom-up 

approach, the light source is positioned beneath a transparent resin tank base, curing each layer 

while the build platform moves upward. This setup needs relatively smaller volumes of resin 

(Vithani et al., 2018). Conversely, in the top-down approach, the light source is projected from 

above, and the build platform moves downward into the vat, necessitating larger resin volumes to 

keep the part fully submerged (Manapat et al., 2017). Variants of SLA include digital light 

processing (DLP) and continuous liquid interface production (CLIP), both of which raise 

resolution and speed (Vithani et al., 2018). SLA is regarded as a high-resolution technique, but 

challenges stay: light scattering can create non-specific polymerization, affecting print quality 

(Hwang et al., 2018). Additionally, post-curing, post-processing, and sacrificial support structures 

are often needed. The choice of materials is restricted, with photocurable polymers being the most 

broadly applied (Vithani et al., 2018). A highly specialized and more expensive variant, two-

photon polymerization (TPP), employs two laser beams to polymerize resin, enabling the 

fabrication of nanostructures with unprecedented resolution, down to 120 nm (Kawata et al., 

2001; Maruo et al., 1997). 

Conclusions: The applying of Eudragit (EUD) polymers in progressive formulation 

platforms like hot-melt extrusion (HME) and three-dimensional (3D) printing has meaningfully 

transformed the landscape of drug delivery design and expansion. These polymers are worth 

excipients due to their tunable solubility, flexibility in utilization, and capability to withstand high 

processing temperatures, enabling the design of aimed, sustained, and personalized drug release 

profiles. Their utilizations developfrom conventional applies, like taste masking and enteric 

coating, to cutting-edge attitudes, containing colon-specific delivery systems and mucoadhesive 

technologies. Across a broad spectrum of dosage forms, different grades of EUD polymers have 

consistently demonstrated versatility and adaptability. This review has highlighted key advances 

in the utilization of EUD polymers within HME and additive manufacturing, supported by 

extensive examples, formulation strategies, and mechanistic discernments. In spite of this 

promise, different technical challenges stay. These include the miscibility of drugs and polymers, 

the risk of thermal degradation, and the maintenance of stability through and after processing. 

Such challenges must be addressed in a formulation-specific manner. Future work should 

therefore centralize on rational selection of polymer–drug–plasticizer systems, expansion of 

predictive models for drug release behavior, and optimization of processing situations to ensure 

both scalability and regulatory compliance. In conclusion, the integration of EUD polymers with 

HME and 3D printing represents a powerful approach to advancing personalized medicine. These 
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technologies have the potential to generate dosage forms that are not only effective and stable but 

also tailored to the particular therapeutic and individual requirements of patients. 
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   چکیده

را   (3D) بعدیو چاپ سه  (HME) ای همچون اکستروژن ذوبی داغهای پیشرفتهای روش محیط تولید دارو به طور فزایندههدف: 

شدت بر ماده جانبی گیرد. هر دو فناوری بهپذیر به کار میشده، کارآمد و مقیاسسازیهای دارورسانی شخصیبرای گسترش سامانه 

با هدف ارائه گزارشی   مقاله مروریگیرد. این ای از پلیمرهای متاکریلاتی را دربر می اند که خانواده گستردهمتکی (EUD) یودرژیت

شده دارورسانی از نوع های کنترلها در سامانه بعدی، با تمرکز بر نقش آن و چاپ سه    HME در EUD جامع از کاربرد پلیمرهای

 . پایدار، فوری و هدفمند انجام شد

-L100 و   EPO  ،RL  ،RS  ،L100  ،S100  نظیر EUD در این مقاله مروری، استفاده از گریدهای مختلف:  هامواد و روش

سازی فرآیند و سازوکارهای رهایش دارو بررسی شد. بحث شامل ارزیابی راهبردهای فرمولاسیون، در طراحی فرمولاسیون، بهینه 55

فرآیند   از  پس  پایداری  و  فرآیندی  نوآوری استشرایط  سامانه .  شامل  اخیر،  برهای  مبتنی  عملکردی  و  هوشمند  با   EUD های 

(، نیز مورد توجه قرار  theranosticتشخیصی )-گیری اختصاصی کولون و خصوصیات درمان، هدفmucoadhesiveهای  ویژگی

به-وهای مکانیکی و سازگاری دارد. همچنین ویژگینگرفت تعیینپلیمر  کننده حیاتی موفقیت در فرمولاسیون تحلیل  عنوان عوامل 

 .  شدند

پذیری کنند و قابلیت انعطاف ها و اشکال دارورسانی پشتیبانی می اند که از طیف وسیعی از پلتفرمنشان داده EUD پلیمرهای :نتایج 

سازی  در فراهم EUD های اخیر بیانگر تواناییپذیری بالایی در فرآیندهای داروسازی دارند. مطالعات موردی و پیشرفتو انطباق 

 EUD دهند. عملکرد هوشمند پلیمرهایکه به نیازهای درمانی خاص نیز پاسخ می شده هستند، در حالیهای رهایش کنترلمکانیزم

، رهایش اختصاصی در محل و کاربردهای تشخیصی گسترش mucoadhesiveهایی همچون ها را برای ایجاد ویژگی ظرفیت آن 

https://orcid.org/0009-0002-0431-4237
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هایی همچون تخریب حرارتی طی فرآیند، ناسازگاری یا امتزاج ناکافی بین دارو و پلیمر و حساسیت به  داده است. با این حال، چالش

های اختصاصی  حلکنند که باید از طریق راههای مهمی در فرمولاسیون ایجاد می ها چالشرطوبت همچنان باقی است. این محدودیت

 .فرایند و فرمولاسیون مدیریت شوند

به  EUD بر نقش محوری پلیمرهای  یمرورمطالعه  این  :  گیرینتیجه تولیدات دارویی نسل آینده،  و   HME ویژه در زمینهدر 

های های نوین دارورسانی هستند، اما چالشکند. اگرچه این پلیمرها نویدبخش توسعه سامانه بعدی(، تأکید میساخت افزایشی )چاپ سه 

پلیمر، خطر تخریب حرارتی و حفظ یکپارچگی پس از فرآیند همچنان پابرجاست. رفع این مسائل برای  -فنی همچون ناسازگاری دارو

پلیمرهایبهره پتانسیل  از  کامل  راهبردهای     EUD برداری  موردی،  مطالعات  ادغام  با  است.  آینده ضروری  داروهای  توسعه  در 

پژوهشگر برای  ارزشمندی  منبع  مرور  این  مکانیزمی،  درک  و  به فرمولاسیون  فرمولاتورها  و  می ان  قابلیت  شمار  از  بتوانند  تا  رود 

 .مند شونددر کاربردهای دارویی نوین بهره  EUD پذیریانطباق

شده دارو، کوپلیمرهای  بعدی، رهایش کنترل، چاپ سه (EUD)  ، پلیمرهای یودرژیت (HME)  اکستروژن ذوبی داغ :  کلیدی  کلمات

 متاکریلات 
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