تأثیر محرک‌های نانو فلزی بر تولید برخی متابولیت‌های ثانویه در کشت ریشه‌های مویین گیاه دارویی شیرین‌بیان‌سا (Galega officinalis L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‏آموخته کارشناسی ارشد بیوتکنولوژی کشاورزی، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

4 دانشجوی دکتری بیوتکنولوژی کشاورزی، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

هدف: گیاه شیرین‌بیان‌سا (Galega officinalis L.) از خانواده لگومینوز است که در درمان دیابت از آن استفاده می‌شود. کشت ریشه‌های مویین سیستم ارزشمندی جهت تولید متابولیت‌های ثانویه در مقیاس وسیع است. کاربرد محرک‌ها در کشت بافت و سلول گیاهی، یکی از ابزارهای زیست‌فناورانه کارآمد برای القاء بیوسنتز و تجمع متابولیت‌های ثانویه است. این تحقیق با هدف بررسی تاثیر نانو ذرات آهن، نقره و سیلیکون بر محتوای گالگین در کشت ریشه‌های مویین گیاه G. officinalis انجام شد.
مواد و روش‌ها: در این تحقیق القای ریشه‌های مویین در ریزنمونه‌های برگ، کوتیلدون و هیپوکوتیل G. officinalis با استفاده از سویه A4 باکتری Rhizobium rhizogenes انجام و تأثیر غلظت‌های مختلف نانو محرک‌های نقره، سیلیکون و اکسید آهن بر رشد ریشه و محتوای گالگین، فنول و فلاونوئید کل ریشه‌های مویین بررسی شد.
نتایج: نتایج حاصل از تلقیح ریزنمونه‌های مختلف گیاه G. officinalis با سویه A4 نشان داد که بیشترین میزان القای ریشه در ریزنمونه‌های برگ با میانگین پنج ریشه در هر ریزنمونه به دست آمد. در بین ریشه‌های مویین تیمار شده با محرک، بیشترین میزان رشد ریشه متعلق به تیمار 50 و 100 میلی‌گرم در لیتر نانو ذرات سیلیکون به مدت 72 ساعت بود. کاربرد تمامی سطوح محرک‌های نقره، آهن و سیلیکون به مدت 36 ساعت منجر به افزایش معنی‌دار میزان فنول کل ریشه‌های مویین شد به طوری که بیشترین میزان فنل کل در تیمار ریشه‌ها با غلظت 100 میلی‌گرم در لیتر نانو ذرات سیلیکون به مدت 36 ساعت و با میانگین 09/3 میلی‌گرم بر گرم به دست آمد. همچنین بر اساس نتایج، بیشترین میزان فلاونوئید کل در غلظت 200 میلی‌گرم در لیتر نانو اکسید آهن به مدت 36 ساعت و بیشترین میزان محتوای گالگین در تیمار ریشه‌ها با 10 و 20 میلی‌گرم در لیتر نانو ذرات نقره و 100 میلی‌گرم در لیتر نانو ذرات سیلیکون به مدت 36 ساعت به‌دست آمد. 
نتیجه‌گیری: نوع و غلظت مناسب نانو محرک عامل مؤثری در میزان پاسخ ریشه‌های مویین به نانو محرک‌ها است. بیشترین عملکرد گالگین (55/17 میلی‌گرم) در تیمار ریشه‌ها با غلظت 50 میلی‌گرم در لیتر نانو ذرات سیلیکون به مدت 72 ساعت به‌دست آمد. این امر را می‌توان هم به رشد بهتر ریشه‌های مویین و هم به محتوای بالای گالگین در این غلظت نسبت داد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of nano-elicitors on the production of some secondary metabolites in hairy roots of Galega (Galega officinalis L.)

نویسندگان [English]

  • Parisa Ghanbari Namin 1
  • Rasool Asghari Zakaria 2
  • Nasser Zare 3
  • Maryam Khezri 4
1 MSc Student, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghgh Ardabili, Ardabil, Iran.
2 Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghgh Ardabili, Ardabil, Iran.
4 PhD Student, Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghgh Ardabili, Ardabil, Iran.
چکیده [English]

Objective
Galega (Galega officinalis L.) from the leguminous family is used to treat diabetes. Hairy root culture is a valuable system for the production of secondary metabolites on a large scale. The use of elicitors in plant tissue and cell culture is one of the most efficient biotechnological tools for inducing biosynthesis and accumulation of secondary metabolites. This study aimed to investigate the effect of iron, silver, and silicon nanoparticles on growth and galegine content in hairy roots of G. officinalis.
Materials and methods
In this study, induction of hairy roots in leaf, cotyledon, and hypocotyl explants of G. officinalis was performed using the A4 strain of Rhizobium rhizogenes, and the effect of different concentrations of silver, silicon, and iron oxide nano-elicitors on growth and galegine, phenol, and flavonoids content of hairy roots was investigated.
Results
The highest rate of root induction was obtained in leaf explants with an average of 5 roots per explant. The highest root growth rate belonged to the treatments with 50 and 100 mg l-1 silicon nanoparticles for 72 h. Application of all levels of silver, iron, and silicon elicitors for 36 h resulted in a significant increase in the total phenol content of hairy roots. Thus that the highest amount of total phenol was obtained in 36 h treatment of roots with a concentration of 100 mg l-1 of silicon nanoparticles without significant difference with 10 and 20 mg l-1 silver nanoparticles. Also, the highest amount of total flavonoids was obtained at 200 mg l-1 iron nanoparticles for 36 h; and the highest content of galegine was obtained in the treatment of roots with 10 and 20 mg l-1 silver, and 100 mg l-1 silicon nanoparticles for 36 h.
Conclusions
The appropriate type and concentration of elicitors is an effective factors in the response of hairy roots to nano-elicitors. The highest yield of galegine (17.55 mg) was obtained in the treatment of roots with 50 mg l-1 of silicon nanoparticles for 72 h. This can be attributed to both better growth of hairy roots and high galegine content at this treatment.

کلیدواژه‌ها [English]

  • Galegine
  • Hairy roots
  • Nano-elicitors
  • Secondary metabolites
احمدی جعفر؛ محمدی راضیه؛ گروسی قاسمعلی؛ حسینی رامین (1391). بهینه‌سازی کالوس‌زایی و سوسپانسیون سلولی پروانش (Catharanthus roseus). مجله بیوتکنولوژی کشاورزی 4(1)، 18-1.
تدین رضا؛ میرزایی سعید؛ رحیمی مهدی؛ سالاری حسن (1395) بررسی تأثیر نانو ذرات نقره بر ماندگاری میوه پرتقال Citrus sinensis مجله پژوهش‌های گیاهی 29(2)، 319-327.‎
راعی منا؛ امیدی منصور؛ ترابی سپیده؛ خدایاری مهدیه (1395) کاربرد الیسیتورهای نانویی برای تولید آلوئین در سوسپانسیون سلولی گیاه آلوئه‌ورا (Aloe vera L.).  تحقیقات گیاهان دارویی و معطر ایران 32(2)، 263-256.
علیپور سجاد؛ نصیبی فاطمه؛ فرهمند همایون (1393) بررسی اثر غلظت‌های متفاوت سدیم نیترو پروساید (SNP) بر صفات فیزیولوژیکی و افزایش عمر گلجایی گل شاخه بریده مریم (Polianthes tuberosa L.). مجله پژوهش‌های گیاهی 27(5)، 914-904
کمالی نادیا؛ صادقی‌پور احمد؛ سوری مهشید (2017) بررسی سمیت نانوذره اکسید آهن بر جوانه‌زنی و رشد اولیه دو گونه Agropyron elongatum و Agropyron desertorum. مرتع 11(3)، 330-321‎
محب‌الدینی مهدی؛ فتحی رقیه (1400) تأثیر نانو ذرات اکسید آهن بر القای ریشه‌های مویین و فعالیت آنتی‌اکسیدانی گیاه خرفه (Portulaca oleracea L.). مجله بیوتکنولوژی کشاورزی 13(3)، 90-69
مینایی سمیرا؛ اصغری زکریا رسول؛ زارع ناصر؛ خضری مریم (1400) بررسی تأثیر نانومحرک‌ها بر رشد سلولی و برخی ویژگی‌های بیوشیمیایی آن در کشت سوسپانسیون سلولی گیاه دارویی شیرین بیان‌سا (Galega officinalis L.). مجله پژوهش‌های گیاهی گیاهی (انتشار آنلاین)
یوسفی کبری؛ ریاحی مدوار علی؛ باقی‌زاده امین (1394) بررسی تأثیر الیسیتورهای نقره و مس بر بیان ژن فلاون سینتاز 1 و برخی پارامترهای بیوشیمیایی در گیاهچه‌های زیره سبز (Cuminum cyminum L.) بومی ایران. مجله پژوهش‌های گیاهی 28(1)، 223-210
References
Abdi G, Salehi H, Khosh-Khui M (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol Plant 30, 709–714.
Ahmadi, J, Mohammadi R, Garoosi G, Hossini R (2012). Optimization of callus induction and cell Suspension in Catharanthus roseus. Agric Biotechnol J 4(1), 1-18 (In Persian).
Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6, 1720–1731.
Alipour S, Nasibi F, Farahmand H (2015) Effect of different concentrations of sodium nitroprusside on physiological characteristics and the vase life of cut flowers of toberose (Polianthes tuberosa L.). J Plant Res (Iran J Biol), 27(5), 904-914 (In Persian).
Aminizadeh M, Riahi-Madvar A, Mohammadi M (2016) Nano-metal oxides induced sulforaphane production and peroxidase activity in seedlings of Lepidium draba (Brassicaceae) Prog Biol Sci 6(1), 75-83.
Atanasov A (2016) Anti-platelet fraction isolated from Galega officinalis. Acta Medica Bulg 43, 5–10.
Bailey CJ, Day C (2004) Metformin: its botanical background. Pract Diabetes Int 21, 115–117.
Barik DP, Mohapatra U, Chand PK (2005) Transgenic grass pea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24, 523–531.
Bondarian, F., Omidi, M., & Torabi, S. The effect of nanoelicitors on alkaloid production of Papaver somniferum in suspension cell culture (Msc thesis Azad university of Tehran. 2013, (In Persian).
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.
Chan M, Zhao J, Brown P, Khan IA (2010) Phytochemical Study of Galega officinalis. Planta Med 76(05), P62.
Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J food drug Anal 10.
Crane C, Wright E, Dixon RA, Wang ZY (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223, 1344–1354.
Dorling PR, Colegate SM, Huxtable CR (2004) Poisonous sedges: the galegine content of Schoenus rigens at various growth stages. Poisonous Plants and Related toxins 298–303.
El-Esawi MA, Elkelish A, Elansary HO, Ali HM, Elshikh M, Witczak J, Ahmad M )2017( Genetic transformation and hairy root induction enhance the antioxidant potential of Lactuca serriola L. Oxid Med Cell Longev 2017.
Gheisary B, Hosseini B, Hassanpour H, Rahimi A (2018) Effects of silicon and AgNO3 elicitors on biochemical traits and antioxidant enzymes activity of henbane (Hyoscyamus reticulatus L.) Hairy Roots. J Med Plant By-product 7, 135–144.
Golluce M, Sahin F, Sokmen M et al. (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extract from (Mentha longifolia L.) ssp. longifolia. Food Chem103, 1449-1456.
Gutierrez-Valdes N, Häkkinen ST, Lemasson C, et al. (2020) Hairy root cultures—a versatile tool with multiple applications. Front Plant Sci 11, 33.
Halder M, Sarkar S, Jha S (2019) Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 19, 880–895.
Hatami M, Naghdi Badi H, Ghorbanpour M (2019) Nano-elicitation of secondary pharmaceutical metabolites in plant cells: A review. J Medic Plant 18(71), 6-36. (In Persian).
Heidarpour F, Mohammadabadi MR, Zaidul ISM, Maherani B, Saari N, Hamid AA, Abas F, Manap MYA, Mozafari MR (2011) Use of prebiotics in oral delivery of bioactive compounds: a nanotechnology perspective. Pharmazie 66 (5), 319-324
Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25, 443–447.
Kamali N, Sadeghipour A, Souri M (2017) Investigating the toxicity effects of nano Fe3O4 on germination and early growth of Agropyron desertorum and Agropyron elongatum. Rangeland 11(3), 321-330 (In Persian).
Kastell A, Smetanska I, Ulrichs C, et al. (2013) Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Appl Biochem Biotechnol 169, 624–635.
Khalili M, Hasanloo T, Kazemi Tabar SK (2010) Ag enhanced silymarin production in hairy root cultures of’Silybum marianum (L.) Gaertn. Plant Omics 3, 109–114.
Liang Y, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147, 422–428.
Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci Total Environ 408 (16), 3053–3061.
Malik S, Andrade SA, Mirjalili MH, Arroo RR, Bonfill M, Mazzafera P (2016) Biotechnological approaches for bioremediation: in vitro hairy root culture. In Transgenesis and secondary metabolism (Vol. 1). Springer International Publishing.
Matvieieva NA, Morgun BV, Lakhneko OR, Duplij VP, Shakhovsky AM, Ratushnyak, YI, Sidorenko M, Mickevicius S, Yevtushenko DP )2020( Agrobacterium rhizogenes-mediated transformation enhances the antioxidant potential of Artemisia tilesii Ledeb. Plant Physiol. Biochem. 152, 177–183.
Minaei Minabad S, Asghari Zakaria R, Zare N, Khezri M (2021) Effect of nanoelicitors on some biochemical properties in cell suspension cultures of Galega officinalis. J Plant Res (Iran J Biol). (In Persian).
Mohammadabadi MR, El-Tamimy M, Gianello R, Mozafari MR (2009) Supramolecular assemblies of zwitterionic nanoliposome-polynucleotide complexes as gene transfer vectors: Nanolipoplex formulation and in vitro characterization. J liposome Res 19 (2), 105-115.
Mohammadabadi MR, Mozafari MR (2018) Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. J Drug Deliv Sci Technol 47 (1), 445–453.
Mohammadabadi MR, Mozafari MR (2019) Development of nanoliposome-encapsulated thymoquinone: evaluation of loading efficiency and particle characterization. J Biopharm 11 (4), 39-46
Mohebodini M, Fathi R (2021) Effect of iron oxide nanoparticles on hairy root induction and antioxidant activity in Purslane (Portulaca oleracea). Agric Biotechnol J 13(3), 70-90
Mortazavi SM, Mohammadabadi MR, Mozafari MR (2005) Applications and in vivo behaviour of lipid vesicles. In: Nanoliposomes From Fundamentals to Recent Developments (pp. 67-76). Trafford Publishing.
Nourozi E, Hosseini B, Hassani A (2014) A reliable and efficient protocol for induction of hairy roots in Agastache foeniculum. Biologia 69(7), 870-879.
Nourozi E, Hosseini B, Maleki R, Abdollahi Mandoulakani B (2019) Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy‐root cultures. J Sci Food Agric 99, 6418–6430.
Oberdörster G, Maynard A, Donaldson K, et al. (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(1), 1-35.
Omidi M, Abdollahi P (2015) Biotechnology for large scale production of plants secondary metabolites. Mod Genet J 9(4), 391-402.
Park H-J, Kim S-H, Kim H-J, Choi S-H (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22, 295–302.
Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37, 91–102.
Raee M, Omidi M, Torabi S, Khidayari M (2016) Application of nano-elicitors to produce aloin in cell suspension of Aloe vera L.. Iran J Medic Aromat Plants Res, 32(2), 256-263. (In Persian).
Raigond P, Kaundal B, Sood A, et al. (2018) Quantification of biguanide and related compounds (anti-diabetic) in vegetables and fruits. J Food Compos Anal 74, 82–88.
Sharafi E, Fotokian MH, Loo H (2013) Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of John’swort (Hypericum perforatum L). J Medic Plant By-product 2(2). 2, 177-184.
Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299, 152–178.
Sivanesan I, Jeong BR (2014) Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora Bunge by altering activity of antioxidant enzyme. Sci World J 2014.
Soleimani T, Keyhanfar M, Piri K, Hasanloo T (2012) Morphological evaluation of hairy roots induced in Artemisia annua L. and investigating elicitation effects on the hairy roots biomass production. Int J Agric Res 2, 1005–1013.
Tadayon R, Rahimi M, Salari H (2016) Evaluation the silver nanoparticles on shelf life of Citrus Sinensis. J Plant Res (Iran J Biol) 29(2), 319-327. (In Persian).
Vakil MMA, Mendhulkar VD (2013) Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. Bot Stud 54, 1–8.
Wang JW, Wu JY (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Biotechnol Hairy Root Syst 55–89.
Wang M, Wang R, Mur LAJ, et al. (2021) Functions of silicon in plant drought stress responses. Hortic Res 8, 1–13.
Yousefi K, Riahi A, Baghizadeh A (2015) Investigation of the effects of Ag and Cu elicitors on flavone synthase 1 gene expression and some biochemical parameters on Cuminum cyminum L. endemic from Iran. J Plant Res (Iran J Biol) 28(1), 210-223. (In Persian).
Zarrabi A, Alipoor Amro Abadi M, Khorasani S, Mohammadabadi M, Jamshidi A, Torkaman S, Taghavi E, Mozafari MR, Rasti B (2020) Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules 25 (3), 638.
Zhang B, Zheng LP, Yi Li W, Wen Wang J (2013) Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr Nanosci 9, 363–370.