بررسی تنوع ژنتیکی و شناسایی نشانه های ردپای انتخاب در چهار نژاد اصلی اسب ایرانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

3 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران.

4 دانشیار، موسسه تحقیقات علوم دامی کشور، کرج، ایران.

چکیده

هدف: انتخاب­های طبیعی و مصنوعی باعث تغییر در فراوانی آللی در بین جمعیت­ها شده و به صورت مداوم الگو­های قابل شناسایی را بر روی سطح ژنوم طی فرآیند اهلی­سازی برجای می­گذارند. اطلاعات کمی در خصوص تفاوت­های ساختارهای ژنتیکی در نژادهای اسب بومی ایران که منتج از فشارهای انتخابی هستند وجود دارد. بنابراین، در این مطالعه با استفاده از اطلاعات چهار نژاد اسب بومی شامل ترکمن (29 نمونه)، کاسپین (21 نمونه)، کرد (67 نمونه) و اصیل ایرانی (52 نمونه) به بررسی تنوع ژنتیکی پرداخته شد.
مواد و روش‌ها: برای این منظور سه روش تجزیه مولفه های اصلی (PCA)، پیوستگی مجاور (NJ) و اختلاط جمعیتی مورد بررسی قرار گرفت. در ادامه با کمک ادغام سه روش مختلف شناسایی نشانه­های انتخاب شامل TajimaD، تنوع نوکلئوتیدی (pi) و درجه هاپلوتایپی یکپارچه (iHS) اقدام به شناسایی ردپاهای انتخاب در این نژادها گردید. برای ادغام نتایج مختلف این سه روش، از چهارچوب ترکیب همبسته سیگنال های چند گانه استفاده گردید.
نتایج: تمام روش های مورد استفاده برای بررسی ساختار ژنتیکی، به خوبی این چهار نژاد را از هم جدا نموده و یک الگوی مرتبط با منشاء جغرافیایی را برای تنوع ژنتیکی آن­ها نشان داد. با ترکیب روش­های مختلف شناسایی نشانه­های انتخاب، تعداد زیادی از ژن­های تحت تاثیر فشار انتخاب در هر چهار نژاد شناسایی گردید. این ژن­ها با مسیرهای خاص GO و نواحی مرتبط با QTL در ارتباط بودند. تعداد 16 ژن مشترک در بین چهار نژاد به عنوان ژن های کاندید انتخاب شناسایی گردید. بعلاوه، در هر چهار نژاد تحت بررسی تعداد 11 نوع QTL مشترک شناسایی گردید که به دسته صفات مرتبط با سازگاری، شایستگی از طریق نقص­های ژنتیکی و یا رفتاری و ظاهری قابل تقسیم بودند.
نتیجه‌گیری: در مجموع نتایج بدست آمده در این تحقیق می تواند در درک بهتر فرآیند انتخاب طبیعی و مصنوعی در اسب­های ایران کمک نماید. همچنین این تحقیق به درک بهتر تفاوت­های ژنتیکی بین نژادهای اسب بومی ایران کمک نموده که می تواند در یافتن بهترین راه حل برای حفظ و بهبود تنوع ژنتیکی کمک شایانی نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating of population diversity and detecting of genomic footprints of selection in four main Iranian horse breeds

نویسندگان [English]

  • Seyedeh Fatemeh Mousavi 1
  • Mohammad Razmkabir 2
  • Jalal Rostamzadeh 3
  • Hamid-Reza Seyedabadi 4
1 Ph.D. Student, Department of Animal Science, Faculty of Agriculture Engineering, University of Kurdistan, Sanandaj, Iran
2 Associate Professor, Department of Animal Science, Faculty of Agriculture Engineering, University of Kurdistan, Sanandaj, Iran.
3 Assistant Professor, Department of Animal Science, Faculty of Agriculture Engineering, University of Kurdistan, Sanandaj, Iran.
4 Associate Professor, Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

Objective
Natural and artificial selections change the allele frequencies among populations and consequently leave detectable patterns on the genome during domestication. A little information about the differences of genetic structures of Iranian native breeds that result in these selective pressures are available. Therefore, in this study, we examined genetic diversity using four native horse breeds including Turkmen (29 samples), Caspian (21 samples), Kurdish (67 samples) and Persian Arabian (52 samples).
Materials and methods
For this purpose, three methods including Principal Component Analysis (PCA), neighbor joining (NJ) and admixture were investigated. In addition, with the integrating of three different selection of signature methods, including TajimaD, nucleotide divergency (pi) and integrated haplotype homozygosity score could identify the selection traces in these breeds. To integrate the different results of these three methods, De-correlated composite of multiple signals framework was used.
Results
All the methods used to examine the genetic structure well separated these four breeds and showed a pattern related to geographical origin for their genetic diversity. By combining different methods of identifying the selection signatures, many genes affected by the selection pressure were identified in all four breeds. These genes were associated with specific GO terms and QTL, in which 16 shared candidate genes among all four breeds were identified as suggested candidates for selection. Additionally, 11 different QTL types was identified in all four studied breeds, which was divided into the category of traits related to adaptation, fitness through genetic disorders or morphological and behavioral traits.
Conclusions
Overall, the results of this study can help better understand the process of natural and artificial selections in Iranian horses. In addition, this research has helped to improve our understanding about the genetic differences between studied Iranian horse breeds, which can help in finding the best solution to preserve and improve genetic diversity.

کلیدواژه‌ها [English]

  • selection signatures
  • Asil horse
  • Caspian horse
  • Turkmen horse
  • Kurdish horse
عسکری ناهید، باقی زاده امین، محمدآبادی محمدرضا (1389). مطالعه تنوع ژنتیکی در چهار جمعیت بز کرکی راینی با استفاده از نشانگرهای ISSR. مجله ژنتیک نوین 5، 56-49.
محمدی فر آمنه، فقیه ایمانی سید علی، محمدآبادی محمد رضا، سفلایی محمد (1392) تأثیر ژن TGFβ3 بر ارزش های فنوتیپی و ارثی صفات وزن بدن در مرغ بومی استان فارس. مجله بیو تکنولوژی کشاورزی  5(4)، 136-125.
References
Ala-Amjadi M, Yeganeh H, Sadeghi M (2017) Study of Genetic variation in Iranian Kurdish horse using microsatellite marker. Iran J Anim Sci 48, 335-42.
Alexander DH, Lange K (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinf 12, 246.
Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19, 1655-64.
An B, Xia J, Chang, T, et al. (2019) Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle. Anim Genet 50, 386-90.
Andersson L, Georges M (2004) Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet 5, 202-12.
Anthony DW, Brown DR (2011) The Secondary Products Revolution, Horse-Riding, and Mounted Warfare. J World Prehis 24, 131.
Askari N, A Baghizadeh, MR Mohammadabadi (2010) Study of genetic diversity in four populations of Raeini cashmere goat using ISSR markers. Modern Genet J 5 (2), 49-56 (In Persian).
Askari N, Baghizadeh A, Mohammadabadi MR (2008) Analysis Of The Genetic Structure Of Iranian Indigenous Raeni Cashmere Goat Populations Using Microsatellite Markers. Biotechnology 2 (3), 1-4.
Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93-104.
Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Nat Am J Hum Genet 81, 1084-97.
Ceballos FC, Joshi PK, Clark DW, et al. (2018) Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet 19, 220-34.
Cirello V, Grassi ES, Pogliaghi G, et al. (2022) FAM83B is involved in thyroid cancer cell differentiation and migration. Sci rep 12, 8608.
Colli L, Milanesi M, Talenti A, et al. (2018) Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet Sel Evol 50, 58.
Cook DE, Andersen EC (2017) VCF-kit: assorted utilities for the variant call format. Bioinformatics 33, 1581-2.
Cosgrove EJ, Sadeghi R, Schlamp F, et al. (2020) Genome Diversity and the Origin of the Arabian Horse. Sci rep 10, 9702.
D’Avola A, Legrave N, Tajan M, et al. (2021) PHGDH is required for germinal center formation and is a therapeutic target in MYC- driven lymphoma. The Journal of clinical investigation 132 (9).
Danecek P, Auton A, Abecasis G, et al. (2011) The variant call format and VCFtools. Bioinf 27, 2156-8.
Eydivandi S, Roudbar MA, Ardestani SS, Momen M, Sahana G. (2021a) A selection signatures study among Middle Eastern and European sheep breeds. J Anim Breed Genet 138 (5), 574-588.
Eydivandi S, Roudbar MA, Karimi MO, Sahana G (2021b) Genomic scans for selective sweeps through haplotype homozygosity and allelic fixation in 14 indigenous sheep breeds from Middle East and South Asia. Sci Rep 11, 2834.
Firouz L (1998) The original ancestors of the Turkoman, Caspian horses. In: First international conference on Turkoman horses. Ashgabat, Turkmenistan.
Forbis J (1976) The classic Arabian horse. Liveright Publishing Corporation, New York.
Fotovati A (2000) Persian horse breeds from ancient time to present and their rules in development of world horse breeds. Asian-Australasian J Anim Scis 13, 401-.
Gautier M, Vitalis R (2012) rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 28, 1176-7.
Gharahveysi S, Irani M (2011) Inbreeding study on the Iranian Arab horse population. World J Zoology 6, 1-6.
Ghasemi M, Baghizadeh A, Abadi MRM (2010) Determination of genetic polymorphism in Kerman Holstein and Jersey cattle population using ISSR markers. Aust J Basic Appl Sci 4 (12), 5758-5760.
Ghoreishifar SM, Eriksson S, Johansson AM, et al. (2020) Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genet Sel Evol 52, 52.
Gurgul A, Jasielczuk I, Semik-Gurgul E, Pawlina-Tyszko K (2019) A genome-wide scan for diversifying selection signatures in selected horse breeds. PLoS One 14, e0210751.
Hosseini M, Shahrbabak HM, Zandi MB, Fallahi M (2016) A Morphometric Survey Among Three Iranian Horse Breeds with Multivariate Analysis. Media Peternakan 39, 155-60.
Islam F, Gopalan V, Lam AK-y (2018) RETREG1 (FAM134B): A new player in human diseases: 15 years after the discovery in cancer. Journal of Cellular Physiology 233, 4479-89.
Jiskrová I, Vrtková I, Prausová M (2016) Genetic diversity of populations of Akhal-Teke horses from the CzechRepublic, Russia, Estonia and Switzerland. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 64, 461-6.
Kalbfleisch TS, Rice ES, DePriest MS, et al. (2018) Improved reference genome for the domestic horse increases assembly contiguity and composition. Communications Biology 1, 197.
Karimi K, Strucken EM, Moghaddar N, et al. (2016) Local and global patterns of admixture and population structure in Iranian native cattle. BMC Genet 17, 108.
Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database 2011.
Kemper KE, Saxton SJ, Bolormaa S, Hayes BJ, Goddard ME. (2014) Selection for complex traits leaves little or no classic signatures of selection. BMC Genomics 15, 1-14.
Lange M, Kaynak B, Forster UB, et al. (2008) Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev 22, 2370-84.
Lee S, Choi I (2021) Expression patterns and biological function of Specc1 during mouse preimplantation development. Gene Expression Patterns 41, 119196.
Lotterhos KE, Card DC, Schaal SM, et al. (2017) Composite measures of selection can improve the signal-to-noise ratio in genome scans. Methods Ecol Evol 8, 717-27.
Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24, 1031-46.
Ma Y, Ding X, Qanbari S, et al. (2015) Properties of different selection signature statistics and a new strategy for combining them. Heredity 115, 426-36.
Malomane DK, Reimer C, Weigend S, et al. (2018) Efficiency of different strategies to mitigate ascertainment bias when using SNP panels in diversity studies. BMC Genomics 19, 22.
Mészáros G, Eaglen S, Waldmann P (2014) A genome wide association study for longevity in cattle. Open Journal of Genetics 2014.
Mohammadabadi M, Bordbar F, Jensen J, et al. (2021) Key genes regulating skeletal muscle development and growth in farm animals. Animals 11 (3), e835.
Mohammadabadi MR (2017) Inter-Simple Sequence Repeat loci Associations with Predicted Breeding Values of Body Weight in Kermani Sheep. Genet 3rd Millennium 14 (4), 4383-4390.
Mohammadifar A, Mohammadabadi MR (2011) Application of Microsatellite Markers for a Study of Kermani Sheep Genome. Iran J Anim Sci 42 (4), 337-344.
Mohammadifar A, Faghih Imani SA, Mohammadabadi MR, Soflaei M (2014) The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agric Biotechnol J 5 (4), 125-136.
Mohammadifar A, Mohammadabadi M (2018) Melanocortin-3 receptor (MC3R) gene association with growth and egg production traits in fars indigenous chicken. Malays Appl Biol 47 (3), 85-90.
Mohammadabadi MR, Esfandyarpoor E, Mousapour A (2017) Using Inter Simple Sequence Repeat Multi-Loci Markers for Studying Genetic Diversity in Kermani Sheep. J Res Develop 5 (2), e154.
Moridi M, Masoudi A, Vaez Torshizi R, Hill E (2013) Mitochondrial DNA D‐loop sequence variation in maternal lineages of I ranian native horses. Anim Genet 44, 209-13.
Nazari F, Seyedabadi H-R, Noshary A, Emamjomeh-Kashan N, Banabazi M-H. (2022) A Genome-Wide Scan for Signatures of Selection in Kurdish Horse Breed. J Equine Vet Sci 113, 103916.
Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS 76, 5269-73.
Petersen JL, Mickelson JR, Cothran EG, et al. (2013) Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data. PLoS ONE 8, e54997.
Purcell S, Neale B, Todd-Brown K, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. The Nat Am J Hum Genet 81, 559-75.
Qi M, Tan B, Wang J, et al. (2019) Small intestinal transcriptome analysis revealed changes of genes involved in nutrition metabolism and immune responses in growth retardation piglets1. J Anim Sci 97, 3795-808.
Rahimi-Mianji G, Nejati-Javaremi A, Farhadi A (2015) Genetic diversity, parentage verification, and genetic bottlenecks evaluation in iranian turkmen horse1. Russ J Genet 51, 916-24.
Randhawa IAS, Khatkar MS, Thomson PC, Raadsma HW (2014) Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep. BMC Genet 15, 1-19.
Sadeghi R, Moradi-Shahrbabak M, Miraei Ashtiani SR, et al. (2019) Genetic Diversity of Persian Arabian Horses and Their Relationship to Other Native Iranian Horse Breeds. J Hered 110, 173-82.
Salek Ardestani S, Zandi MB, Vahedi SM, Janssens S (2022) Population structure and genomic footprints of selection in five major Iranian horse breeds. Anim Genet, DOI: 10.1111/age.13243.
Saravanan KA, Panigrahi M, Kumar H, et al. (2020) Selection signatures in livestock genome: A review of concepts, approaches and applications. Livest Sci 241, 104257.
Schlamp F, van der Made J, Stambler R, et al. (2016) Evaluating the performance of selection scans to detect selective sweeps in domestic dogs. Mol Ecol 25, 342-56.
Seyedabadi H, Amirinia S, BANA BM, Emrani H (2006) Parentage verification of Iranian Caspian horse using microsatellites markers, Iran J Biotechnol 4 (4), 260-264.
Shukla SK, Liu W, Sikder K, et al. (2017) HMGCS2 is a key ketogenic enzyme potentially involved in type 1 diabetes with high cardiovascular risk. Sci rep 7, 4590.
Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-95.
Team RC (2013) R: A language and environment for statistical computing.
Todorov V, Templ M, Filzmoser P (2011) Detection of multivariate outliers in business survey data with incomplete information. Advances in Data Analysis and Classification 5, 37-56.
Vatsiou AI, Bazin E, Gaggiotti OE (2016) Detection of selective sweeps in structured populations: a comparison of recent methods. Mol Ecol 25, 89-103.
Venables WN, Ripley BD (2013) Modern applied statistics with S-PLUS. Springer Science & Business Media.
Verity R, Collins C, Card DC, et al. (2017) minotaur: A platform for the analysis and visualization of multivariate results from genome scans with R Shiny. Mol Ecol Resour 17, 33-43.
Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS biology 4, e72.
Wu T, Hu E, Xu S, et al. (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, 100141.
Yurchenko AA, Daetwyler HD, Yudin N, et al. (2018) Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Sci rep 8, 12984.
Zheng Y-Z, Liang L (2018) High expression of PXDN is associated with poor prognosis and promotes proliferation, invasion as well as migration in ovarian cancer. Ann Diagn Pathol 34, 161-5.