تنوع ژنتیکی و بیماریزایی جدایه‌های Xanthomonas translucens عامل لکه نواری باکتریایی گندم در استان‌های خراسان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار، گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 استاد، گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

هدف: لکه نواری باکتریایی گندم یکی از مهمترین بیماری­های باکتریایی گندم در سراسر جهان است. گونه Xanthomonas translucens  سبب بروز این بیماری می­شود. بررسی بیماریزایی جدایه­های به دست آمده از لکه نواری باکتریایی بر روی بوته­های گندم، بررسی مقاومت ارقام مختلف گندم در برابر جدایه با بالاترین قدرت بیماریزایی، شناسایی مولکولی جدایه­ها و بررسی تنوع ژنتیکی جدایه­ها از اهداف این تحقیق  به شمار می­رود.
مواد و روش‌ها: نمونه­برداری از مزارع گندم آلوده به این بیماری در سه استان خراسان رضوی، خراسان شمالی و لرستان انجام شد. قسمت­های دارای علائم پس از ضد عفونی سطحی و ایجاد سوسپانسیون در آب مقطر استریل، روی محیط آگار غذایی حاوی سوکروز کشت  شدند. آزمون بیماریزایی تمام جدایه­ها روی بوته­های گندم رقم فلات بررسی شد. مقاومت ارقام مختلف گندم در برابر جدایه نماینده مورد بررسی قرار گرفت. آزمون rep-PCR با استفاده از آغازگرهای ERIC و BOX برای ارزیابی تنوع ژنتیکی جدایه­ها استفاده شد. برای شناسایی جدایه­های نماینده، بخشی از ژن­های gyrB  و dnaK  جدایه­ها تکثیر و توالی­یابی شدند.
نتایج: کلونی­های باکتریایی با مشخصات زرد روشن، گرد و صاف جداسازی و خالص گردید. آزمون بیماریزایی تمام جدایه­ها روی بوته­های گندم اثبات گردید. جدایه­ها در میزان بیماریزایی روی گندم متفاوت بودند. جدایه با بالاترین میزان بیماریزایی، به ارقام مختلف گندم تلقیح شد. پاسخ ارقام مختلف گندم به جدایه منتخب متفاوت بود اما در نهایت همگی به این جدایه حساس بودند. آنالیز خوشه­ای الگوی باندی به دست آمده با آغازگرهای ERIC و BOX با استفاده از برنامه NTSYS انجام گردید. نتایج بررسی­های مولکولی با تکنیک­ انگشت نگاری DNA نشان داد که تنوع ژنتیکی بین جدایه­های لکه نواری باکتریایی به دست آمده از مناطق مختلف کشت گندم مورد مطالعه وجود دارد. در دندروگرام ترکیبی رسم شده حاصل از دو نشانگر، جدایه­ها در سطح تشابه 33% به پنج گروه تقسیم شدند. مقایسه توالی نوکلئوتیدی جدایه­های نماینده با توالی­های مشابه در ژن بانک، نشان دهنده تشابه بالای توالی­های مورد بررسی ­با توالی­های Xanthomonas translucens pv. undulosa موجود در ژن بانک NCBI بود.
نتیجه‌گیری: استفاده از آزمون rep-PCR برای بررسی تنوع ژنتیکی جدایه­های به دست آمده مناسب می­باشند. در این مطالعه موقیعت جغرافیایی اثری بر روی گروه­بندی جدایه­ها نداشت. بیماری نواری باکتریایی تقریبا در تمام مناطق کشت گندم یافت می­شود و درک بهتر برهمکنش گیاه- بیمارگر در Xanthomonas translucens-گندم برای یافتن و توسعه ارقام مقاوم به این بیماری ضروری به نظر می­رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic Diversity and Pathogenicity of Xanthomonas translucens Strains Causing Bacterial Leaf Streak on Wheat in Khorasan Provinces

نویسندگان [English]

  • Mojtaba Dehghan Niri 1
  • Saeed Tarighi 2
  • Parissa Taheri 3
1 Ph.D. Student, Department of Plant Protection, Ferdowsi University of Mashhad, Mashhad, Iran
2 Dept. Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad
3 Professor, Department of Plant Protection, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Objective
Bacterial leaf streak (BLS) caused by of Xanthomonas translucens, is a serious bacterial seed-borne disease of wheat (Triticum aestivum L.) worldwide. This research was planned to study pathogenicity of the isolates obtained from bacterial leaf streak on wheat plants. Resistance of different wheat cultivars against the isolate with the highest pathogenicity was investigated. Molecular tools were used to identify bacterial isolates and their genetic diversity.
Materials and methods
Bacterial strains with yellow and soft colonies were isolated and their pathogenicity indicated that all selected isolates are pathogen. Aggressiveness of the isolates was differing among isolates. Wheats cultivars showed different responses to selected isolate, but all cultivars were susceptible to the pathogen. Result of molecular analysis with DNA fingerprinting techniques showed genetic diversity among the bacterial isolates obtained from different wheat growing regions. In the cluster analysis of the banding pattern obtained with ERIC and BOX primers, the isolates were divided into 5 main groups at 33% similarity. The results showed significant genetic diversity among isolates causing bacterial leaf streak disease in these provinces. Sequences comparison of gyrB and dnaK genes with similar sequences in the gene bank showed high homology with sequences from Xanthomonas translucens pv. undulosa.
Results
Bacterial strains with yellow and soft colonies were isolated and their pathogenicity indicated that all selected isolates are pathogen. Aggressiveness of the isolates was differing among isolates. Wheats cultivars showed different responses to selected isolate, but all cultivars were susceptible to the pathogen. Result of molecular analysis with DNA fingerprinting techniques showed genetic diversity among the bacterial isolates obtained from different wheat growing regions. In the cluster analysis of the banding pattern obtained with ERIC and BOX primers, the isolates were divided into 5 main groups at 33% similarity. The results showed significant genetic diversity among isolates causing bacterial leaf streak disease in these provinces. Sequences comparison of gyrB and dnaK genes with similar sequences in the gene bank showed high homology with sequences from Xanthomonas translucens pv. undulosa.
Conclusions
The rep-PCR techniques are suitable for studying genetic diversity of the obtained isolates. In this study, geographical location had no effect on the grouping of the isolates. Bacterial leaf streak disease is found in almost every wheat growing area and better understanding of the Xanthomonas translucens-wheat interactions are necessary to find and develop wheat cultivars with resistance to the disease.

کلیدواژه‌ها [English]

  • Diversity
  • Leaf streak
  • Rep-PCR
  • Xanthomonas
عربی فرشته، نیکروش زهرا، بابایی زاد ولی اله و همکاران (1385). وقوع بیماری باکتریایی لکه برگی و بلایت چغندر ناشی از Pseudomonas syringae pv. aptata در ایران. مجله بیماریهای گیاهی 42، 672-655.
عسکری ناهید، باقی زاده امین، محمدآبادی محمدرضا (1389). مطالعه تنوع ژنتیکی در چهار جمعیت بز کرکی راینی با استفاده از نشانگرهای ISSR. مجله ژنتیک نوین 5، 56-49.
محمدی فر آمنه، فقیه ایمانی سید علی، محمدآبادی محمد رضا، سفلایی محمد (1392) تأثیر ژن TGFb3 بر ارزش های فنوتیپی و ارثی صفات وزن بدن در مرغ بومی استان فارس. مجله بیو تکنولوژی کشاورزی  5(4)، 136-125.
محمدی فر آمنه، محمدآبادی محمد رضا (1390) کاربرد نشانگرهای ریزماهواره برای مطالعه ژنوم گوسفند کرمانی. مجله علوم دامی ایران 42(4)، 337-344.
 
 
References
Adhikari TB, Hansen, JM, Gurung S, Bonman JM (2011) Identification of new sources of resistance in winter wheat to multiple strains of Xanthomonas translucens pv. undulosa. Plant Dis 95, 582-588.
Adhikari TB, Gurung S, Hansen JM,  Bonman JM (2012) Pathogenic and Genetic Diversity of Xanthomonas translucens pv. undulosa in North Dakota. Phytopathology 102(4), 390-402.
Alizadeh A, Rahimian H (1989) Bacterial Leaf Streak of Gramineae in Iran. EPPO Bulletin 19, 113-117.
Arabi F, Nickravesh Z, Babaizad V et al. )2006( The occurrence of bacterial blight of beet caused by Pseudomonas syringae pv. aptata in Iran. Iran J Plant Pathol 42, 655-672 (In Persian).
Askari N, Baghizadeh A, Mohammadabadi MR (2010) Study of genetic diversity in four populations of Raeini cashmere goat using ISSR markers. Modern Genet J 5 (2), 49-56 (In Persian).
Askari N, Baghizadeh A, Mohammadabadi MR (2008) Analysis Of The Genetic Structure Of Iranian Indigenous Raeni Cashmere Goat Populations Using Microsatellite Markers. Biotechnology 2 (3), 1-4.
Bragard C, Singer E, Alizadeh A et al. (1997) Xanthomonas translucens from Small Grains: Diversity and Phytopathological Relevance. Phytopathology 87(11), 1111-1117.
Clavijo F, Curland RD, Croce V et al (2022) Genetic and Phenotypic Characterization of Xanthomonas Species Pathogenic in Wheat in Uruguay. Phytopathology112(3), 511-520.
Curland RD, Gao L, Bull CT et al. (2018) Genetic diversity and virulence of wheat and barley strains of Xanthomonas translucens from 2 the Upper Midwestern United States. Phytopathology 108, 443-453.
Duveiller E, Fucikovsky L, Rudolph K (1997) The bacterial diseases of wheat: concepts and methods of disease management. CIMMYT.
Falahi Charkhabi N, Shams-bakhsh M, Rahimian H (2015) Reaction of Iranian Cereal Genotypes to Multiple Strains of Xanthomonas translucens pv. cerealis. J Agric Sci Technol 17, 241-248.
Figueroa M, Hammond-kosack KE, Solomon PS (2018) A review of wheat diseases-a field perspective. Mol Plant Pathol 19 (6), 1523-1536.
Ghasemi M, Baghizadeh A, Abadi MRM (2010) Determination of genetic polymorphism in Kerman Holstein and Jersey cattle population using ISSR markers. Aust J Basic Appl Sci 4 (12), 5758-5760.
Gholamhoseinzadeh Gooki F, Mohammadabadi MR, Asadi Fozi M (2018) Polymorphism of the growth hormone gene and its effect on production and reproduction traits in goat. Iran J Appl Anim Sci 8 (4), 653-659.
Gholamhoseinzadeh Gooki F, Mohammadabadi M, Fozi MA, Soflaei M (2019) Association of Biometric Traits with Growth Hormone Gene Diversity in Raini Cashmere Goats. Walailak J Sci Technol 16 (7), 499-508.
 Ji GH, Wei LF, He YQ et al (2008). Biological control of rice bacterial disease blight by Lysobacter antibioticus strain 13-1. Biol control 45, 288-296.
Katkar M, Raghuwanshi KS, Chimote VP, Borkar SG (2016) Pathological, Bio-chemical and Molecular diversity amongst the isolates of Xanthomonas axonopodis pv. citri causing Citrus canker in acid lime from different agro-climatic region of India. Int J Environ Agric Biotech 1, 1-14.
Khojasteh M, Taghavi SM, Khodaygan P et al. (2019) Molecular Typing Reveals High Genetic Diversity of Xanthomonas translucens Strains Infecting Small-Grain Cereals in Iran. Appl Environ Microbiol 85, e01518-19.
Kölliker R, Kraehenbuehl R, Boller B, Widmer F (2006) Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis. Syst Appl Microbiol 29(2), 109-119.
Langlois PA, Snelling J, Hamilton JP et al. (2017) Characterization of Xanthomonas translucens Complex Using Draft Genomes, Comparative Genomics, Phylogenetic Analysis, and Diagnostic LAMP Assays. Phytopathology 107, 519-527.
Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ (1994) Spe­cific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strain generated with re­petitive sequences and PCR. Appl Environ.Microbiol 60 (7), 2286-2295.
Manigundan K, Puneeth Kumar P, Singh R et al. (2017) REP-PCR distinguishes rice bacterial blight pathogen (Xanthomonas Oryzae pv. Oryzae) strains of Indian Mainland and bay Islands. J Plant Pathol 99 (3), 773-778.
Milus EA, Mirloh AF (1994) Use of Disease Reactions to Identify Resistance in Wheat to Bacterial Streak. Plant Dis 78, 157-161.
Milus EA, Chalkly DB (1994) Virulence of Xanthomonas campestris pv. translucens on selected wheat cultivars. Plant Dis 78, 612-615.
Mohammadabadi MR (2017) Inter-Simple Sequence Repeat loci Associations with Predicted Breeding Values of Body Weight in Kermani Sheep. Genet 3rd Millennium 14 (4), 4383-4390.
Mohammadabadi MR, Esfandyarpoor E, Mousapour A (2017) Using Inter Simple Sequence Repeat Multi-Loci Markers for Studying Genetic Diversity in Kermani Sheep. J Res Develop 5 (2), e154.
Mohammadifar A, Faghih Imani SA, Mohammadabadi MR, Soflaei M (2014) The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agric Biotechnol J 5 (4), 125-136 (In Persian).
Mohammadifar A, Mohammadabadi MR (2018) Melanocortin-3 receptor (MC3R) gene association with growth and egg production traits in fars indigenous chicken. Malays Appl Biol 47 (3), 85-90.
Mohammadifar A, Mohammadabadi MR (2011) Application of Microsatellite Markers for a Study of Kermani Sheep Genome. Iran J Anim Sci 42 (4), 337-344 (In Persian).
Popovic T, Balaž J, Ignjatov M et al. (2014) Identification and genetic characterisation of Xanthomonas Campestris PV. campestris as an oilseed rape pathogen in Serbia. J Plant Pathol 96 (3), 553-560.
Rademaker JLW, Norman DJ, Forster RL et al. (2006) Classification and Identification of Xanthomonas translucens Isolates, Including Those Pathogenic to Ornamental Asparagus. Phytopathology 96(8), 876-884.
Rezene Y, Mitiku M, Tesfaye K et al. (2018) Analysis of the Molecular Diversity of Common Bacterial Blight (Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans) Strains from Ethiopia Revealed by Rep-PCR Genomic Fingerprinting. J Biotechnol Biomater 8, 286.
Rohlf FJ (2000). NTSYSpc: Numerical Taxonomy System, ver. 2.1. Exeter Publishing.
Saeedi Madani A, Marefat A, Behboudi K, Ghasemi A (2010) Phenotypic and genetic characteristics of Xanthomonas citri subsp. malvacearum, causal agent of cotton blight, and identification of races in Iran. Australas Plant Pathol 39, 440-445.
Sapkota S, Megoum M, Liu Z (2020) The translucens group of Xanthomonas translucens: Complicated and important pathogens causing bacterial leaf streak on cereals. Mol Plant Pathol 21, 291-302.
Schaad NW, Jones JB, Chun W (2001) Laboratory Guide for Identification of Plant Pathogenic Bacteria. (3rd ed.). APS Press.
Smith EF, Jones LR, Reddy CS (1919) The Black Chaff of Wheat. Science 50, 48-48.
Tamura K, Stecher G, Peterson D et al. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725-2729.
Thanh TL, Thumanu K, Wongkaew S et al. (2017) Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. oryzae in rice. J Plant Interact 12(1), 108-120.
Vancheva, T., Stoyanova, M., Tasheva-Terzieva, E et al. (2018) Molecular methods for diversity assessment among xanthomonads of Bulgarian and Macedonian pepper. Braz J Microbiol 49, 246-259.
Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repeti­tive DNA sequences in Eubacteria and application to fin­gerprinting of bacterial genomes. Nucleic Acid Res 19(24), 6823-6831.
Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Ge­nomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Mol Cell Biol 5(1), 25-40.
Xu J, Audenaert K, Hofte M, De Vleesschauwer A (2013) Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv. oryzae by suppressing salicylic acidmediated defenses. PLoS ONE 8, 1-10.
Young JM, Park DC, Shearman HM, Fargier E (2008) A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol 31, 366-377.