بررسی تنوع ژنتیکی بنه‌های زعفران (Crocus sativus L.) القا شده با پرتو گاما با استفاده از نشانگر SCoT

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار بیوتکنولوژی کشاورزی گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، ایران

2 دانش‌آموخته کارشناسی ارشد بیوتکنولوژی کشاورزی، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، ایران

چکیده

هدف: زعفران به دلیل عقیم بودن، صرفا از طریق غیرجنسی تکثیر می‌یابد و از این جهت، به استثنای برخی جهش‌های خود به خودی، تغییرات ژنتیکی دیگری، به ‌طور طبیعی در آن ایجاد نمی‌شود. از‌ این ‌رو، جهش‌های القایی می‌توانند به عنوان روشی مناسب جهت ایجاد تنوع در ساختار ژنتیکی گیاه و بهبود خصوصیات رشدی، عملکردی و کیفی آن عمل نمایند. مطالعه حاضر به منظور بررسی تنوع ژنتیکی پرتودیده‌های گیاه زعفران نسبت به نمونه‌های شاهد (بدون پرتوتابی) با استفاده از نشانگر SCoT انجام شد.
مواد و روش‌ها: بنه‌های سالم زعفران در دو سطح 15 و 18 گری پرتو گاما، پرتوتابی و بلافاصله پس از پرتوتابی به‌ همراه بنه شاهد در گلخانه کشت شدند. به منظور بررسی تنوع ژنتیکی ایجاد شده، پس از استخراج DNA از نمونه برگ و تعیین کیفیت و کمیت DNA استخراج شده با استفاده از دستگاه نانودراپ، از 30 آغازگر SCoT استفاده شده، در نهایت 9 آغازگر برای این بررسی مورد تجزیه و تحلیل قرار گرفت.
نتایج: در مجموع 47 نوار نمره‌‌دهی شد که 33 نوار چندشکلی نشان داد به‌ طوری که بیشترین تعداد نوار چندشکل مربوط به SCoT05 (6 نوار) و کمترین تعداد مربوط به SCoT04، SCoT11 و SCoT12 (2 نوار) بود. میانگین درصد و محتوای اطلاعات چندشکلی به ترتیب 35/69 و 36/0 بدست آمد که بیشترین شاخص محتوای چندشکلی، مربوط به SCoT11 و SCoT17 (45/0) و کمترین آن مربوط به SCoT13 (23/0) بود. بیشترین مقدار شاخص نشانگر را نیز SCoT17 (33/0) به خود اختصاص داد. بر اساس نتایج ماتریس ضرایب تشابه جاکارد، دامنه تغییرات از 45/0 تا 88/0 متغییر و میانگین آن برابر با 70/0 گزارش شد. نتایج تجزیه خوشه‌ای نیز نشان داد که 2 نمونه شاهد در خوشه اول، 3 پرتودیده از 4 پرتودیده دوز 15 گری در خوشه دوم و به جز پرتودیده 18G105 که در خوشه مجزا قرار گرفت، سایر پرتودیده‌های 18 گری به همراه پرتودیده 15G132 از سطح 15 گری در یک خوشه گروه‌بندی شدند. بیشترین آلل‌‌های مشاهده شده (Na) در تیمار 15 گری (55/1) و کمترین آن در شاهد (2767/1) برآورد شد. میزان تنوع در جمعیت 15 گری بر اساس شاخص‌های شانون و نی (2061/0=I و 3064/0 =He) بیشتر از شاهد و 18 گری بود.
نتیجه‌گیری: نتایج حاصل از این پژوهش نشان‌داد نشانگر SCoT17 کارایی بالایی در بروز چندشکلی میان پرتودیده‌ها و نمونه‌های شاهد زعفران دارد. تجزیه واریانس مولکولی نیز تنوع درون گروه‌ها را بیشتر از بین گروه‌ها ارزیابی نمود. همچنین تفاوت در الگوی نواری نشانگرهای SCoT، الگوی خوشه‌بندی و یافته‌های فاصله ژنتیکی، سودمندی پرتودهی گاما و کارایی جهش‌زایی را برای ایجاد تنوع در گیاه زعفران نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the genetic diversity of saffron (Crocus sativus L.) corms induced by gamma ray irradiation using the SCoT marker

نویسندگان [English]

  • Seyed Ebrahim Seifati 1
  • Ali Mohammad Mohit-Ardakani 2
1 Assistant Professor, Department of Arid Land and Desert Management, School of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
2 MSc Student, School of Natural Resources and Desert Studies, Yazd University, Yazd, Iran.
چکیده [English]

Objective
Due to its sterility, saffron reproduces only asexually and for this reason, except for some spontaneous mutations, other genetic changes do not occur naturally in it. Therefore, induced mutations can act as a suitable method to create diversity in the genetic structure of the plant and improve its growth, performance and quality characteristics. The present study was conducted to investigate the genetic diversity of irradiated saffron plants compared to control samples (without irradiation) using the SCoT markers.
 
Materials and methods
Healthy saffron corms were grown in the greenhouse along with control corms at two levels of 15 and 18 Gy gamma rays’ radiation and immediately after irradiation. In order to investigate the created genetic diversity, after extracting DNA from the leaf sample and determining the quality and quantity of the extracted DNA using the nanodrop device, out of the 30 SCoT primers used, 9 primers were finally analyzed for this study.
 
Results
A total of 46 strips were scored, 31 strips had polymorphism, so that the highest number of polymorphic strips was related to SCoT05 (6 strips) and the lowest number was related to SCoT04, SCoT11 and SCoT12 (2 strips). The average percentage and Polymorphic Information Content (PIC) were 67.13 and 0.35, respectively, and the highest polymorphic content was related to SCoT11 and SCoT17 (0.45) and the lowest was related to SCoT13 (0.13). SCoT17 (0.33) had the highest Marker Index (MI). Based on the results of the Jaccard’s similarity coefficient matrix, the range of changes varied from 0.45 to 0.88 and its average was reported as 0.70. The results of cluster analysis also showed that two control samples in the first cluster, 3 out of 4 irradiated with 15 Gy dose in the second cluster, and except for 18G105 irradiated which was placed in a separate cluster, the other 18 Gy radiation along with 15G132 irradiated from the 15 Gy level were grouped in a cluster. The most observed alleles (Na) were estimated in the 15 Gy treatment (1.55) and the lowest in the control (1.2767). The amount of diversity in the population of 15 Gy based on Shannon and Ni indices (I=0.2061 and He=0.3064) was more than control and 18 Gy.
 
Conclusions
The results showed the high efficiency of SCoT17 in the incidence of polymorphism among irradiated and control samples of saffron. Molecular variance analysis (AMOVA) evaluated the diversity within groups more than between groups. In addition, the difference in the band pattern of SCoT markers, the clustering pattern and the genetic distance showed the usefulness of gamma irradiation and the efficiency of mutagenesis to create diversity in the saffron plant.

کلیدواژه‌ها [English]

  • Mutation Breeding
  • Radiation
  • Saffron
  • Polymorphic Information Content
بهدانی محمدعلی، ایزانلو علی (1398) بررسی تنوع ژنتیکی در زعفران های با بیش از سه کلاله با استفاده از نشانگر مولکولی SSR و ISSR. زراعت و فناوری زعفران. 7(3)، 358-347.‎
بیات مهدی، امیرنیا رضا، تاجبخش مهدی، تانیولاچ باتین (1395) ارزیابی تنوع ژنتیکی زعفران (Crocus sativus L.) با استفاده از نشانگرهای مولکولی iPBS و SSR. نشریه پژوهش‌های زعفران. 4(1)، 119-103.‎
دادرس احمدرضا، صبوری حسین، محمدی نژاد قاسم، صبوری عاطفه، شعاعی دیلمی مرداویج (1392) بررسی تنوع ژنتیکی ارقام توتون دسته بارلی و ویرجینیا با استفاده از چند شکلی طولی قطعات تکثیری.‎ مجله بیوتکنولوژی کشاورزی کرمان 5(2)، 43-29.
سیفتی سید ابراهیم، محیط اردکانی علی محمد، ایزانلو علی، برزویی اعظم (1399) القای تنوع مورفوفیزیولوژیکی در زعفران (Crocus sativus L.) با استفاده از پرتو گاما. نشریه پژوهش‌های زعفران. 9(1)، 129-115.
شکرپور مجید، عابدی زینب، کلانتری سیامک، سلامی سید علیرضا (1395) بررسی تنوع ژنتیکی برخی نمونه‌های زعفران ایران با استفاده از نشانگرهای ملکولی RAPD و ISSR. زراعت و فناوری زعفران 4(4)، 265-257.
محمدی‌فر آمنه، محمدآبادی، محمدرضا (1390). کاربرد نشانگرهای ریزماهواره برای مطالعه ژنوم گوسفند کرمانی. علوم دامی ایران 42 (4). 344-337.
محیط اردکانی علی محمد، سیفتی سید ابراهیم، ایزانلو علی، کریمی‌بکر زهرا (1401) تاثیر پرتو گاما بر برخی شاخص‌های رشدی و فیتوشیمیایی زعفران (Crocus sativus L.). زراعت و فناوری زعفران 10(3)، 286-273.
References
Abdullaev F (2006) Biological properties and medicinal use of saffron (Crocus sativus L.). Proceedings of the second International Symposium on Saffron Biology and Technology. Mashhad, Iran. p. 339-345 (In Persian).
Alavi-Kia SS, Mohammadi SA, Aharizad S, Moghaddam M (2008) Analysis of genetic diversity and phylogenetic relationships in Crocus genus of Iran using inter-retrotransposon amplified polymorphism. Biotechnol Biotechnol Equip 22, 795-800.
Alavi-Siney SM, Saba J, Nasiri J (2022) Genetic variability and population genetic structure in autotriploid saffron using allelic phenotypes of microsatellite markers. Sci Hortic 299, e111043.
Altıntas S, Toklu F, Kafkas S et al. (2008) Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers. Plant Breed 127, 9-14.
Babaei S, Talebi M., Bahar M, Zeinali H (2014) Analysis of genetic diversity among saffron (Crocus sativus) accessions from different regions of Iran as revealed by SRAP markers. Sci Hortic 171, 27-31.
Bayat M, Amir Niya R, Taj bakhsh M, Tanyvlach B (2015) Evaluation of genetic diversity of saffron (Crocus sativus L.) using iPBS and SSR molecular markers. J Saffron Res 4(1), 103-119 (In Persian).
Busconi M, Soffritti G, Stagnati L, et al. (2018) Epigenetic stability in Saffron (Crocus sativus L.) accessions during four consecutive years of cultivation and vegetative propagation under open field conditions. Plant Sci 277, 1-10.
Chesnokov YV, Artemyeva AM (2015) Bioinformatics and math statistics. Agric Biol 50(5), 571-578.
Collard BC, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27(1), 86-93.
Dadras AR, Sabouri H, Mohammadi Nezhad Q, et al. (2013) Investigation of genetic diversity of Barley and Virginia tobacco varieties using Amplified Fragment Length Polymorphism. Agric Biotechnol J 5(2), 29-44 (In Persian).
Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27(2), 125-132.
El-Mogy MM, Atia MA, Dhawi F, et al. (2022) Towards Better Grafting: SCoT and CDDP Analyses for Prediction of the Tomato Rootstocks Performance under Drought Stress. J Agron 12(1), 1-21.
Gaitán-Espitia JD, Hobday AJ (2021) Evolutionary principles and genetic considerations for guiding conservation interventions under climate change. Glob Change Biol Bioenergy 27(3), 475-488.
Gautam N, Bhattacharya A (2021) Molecular marker based assessment of genetic homogeneity within the in vitro regenerated plants of Crocus sativus L.–a globally important high value spice crops. Afr J Bot 140, 461-467.
Gooki FG, Mohammadabadi M, Fozi MA, Soflaei M (2019) Association of Biometric Traits with Growth Hormone Gene Diversity in Raini Cashmere Goats. Walailak J Sci Technol 16 (7), 499-508.
Hong MJ, Kim DY, Jo YD et al. (2022) Biological Effect of Gamma Rays According to Exposure Time on Germination and Plant Growth in Wheat. Appl Sci 12(6), 3208.
Jahandar Zaboli F, Izanloo A, Ghaderi MG, Rahimi M (2022) Radiosensitivity Test to Determine the Suitable Dose of Induce Mutation in Saffron (Crocus sativus L.). J Saffron Res 9(2), 259-243 (In Persian).
Jun Z, Xiaobin C, Fang C (2006) The Effects of 60Co γ-Irradiation on Development of Crocus sativus L. In II International Symposium on Saffron Biol Tech 739, 307-311.
Katiyar P, Pandey N, Keshavkant S (2022) Gamma Radiation: A Potential Tool for Abiotic Stress Mitigation and Management of Agroecosystem. J Plant Stress 16, e100089.
Khan MA, Nagoo S, Naseer S, et al. (2011) Induced mutation as a tool for improving corm multiplication in saffron (Crocus sativus L.). J Phytol 3(7), e2314.
Khorramdel S, Eskandari Nasrabadi S, Mahmoodi G (2015) Evaluation of mother corm weights and foliar fertilizer levels on saffron (Crocus sativus L.) growth and yield components. J Appl Res Med Arom Plant 2, 9–14.
Kolakar SS, Nadukeri S, Jakkeral SA, et al. (2018) Role of mutation breeding in improvement of medicinal and aromatic crops. J Pharmacogn Phytochem 3, 425-429.
Leone S, Recinella L, Chiavaroli A, et al (2018) Phytotherapic use of the Crocus sativus L.(Saffron) and its potential applications: A brief overview. Phytother Res 32(12), 2364-2375.
Mallick M, Bharadwaj C, Srivastav M, et al. (2017) Molecular characterization of Kinnow mandarin clones and mutants using cross genera SSR markers. Indian J Biotechnol 16, 244-249.
Milbourne D, Meyer R, Bradshaw JE, et al. (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3, 127-136.
Mir JI, Ahmad N, Sing DB, et al. (2015) Breeding and biotechnological opportunities in saffron crop improvement. Afr J Agric Res 10(9), 970–974
Mirzaei S, Salari H (2021) Study on the genetic diversity of tomato’s cultivars via SCoT marker. Agric Biotechnol J 13(4), 101-120.
Mohammadifar A, Mohammadabadi MR (2011) Application of Microsatellite Markers for a Study of Kermani Sheep Genome. Iran J Anim Sci 42 (4), 337-344 (In Persian).
Mohit-Ardakani AM, Seifati SE, Izanloo A, Karimi-bekr Z (2022) The Effect of Gamma Radiation on Some Growth and Phytochemical Indices of Saffron (Crocus sativus). Saffron Agron Tech 10(3), 273-285 (In Persian).
Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44(4), 559-571.
Rubio-Moraga A, Castillo-López R, Gómez-Gómez L, et al. (2009) Saffron is a monomorphic species as revealed by RAPD, ISSR and microsatellite analyses. BMC Res Note 2, 1-5.
Sankar V, Dhanarajan A, Gurunathan S, Elangovan D (2022) 60Co gamma ray induced mutants of cowpea and assessment of genetic variability by SCoT marker. Plant Sci Today 9(3), 672-680.
Seifati SE, Mohit Ardakani AM, Izanloo A, Borzoei A (2021) Induced Morpho-physiological Variation in Saffron (Crocus sativus L.) Using Gamma Radiation. J Saffron Res 9(1), 115-129 (In Persian).
Shaban AS, Arab SA, Basuoni MM, et al. (2022) SCoT, ISSR, and SDS-PAGE Investigation of Genetic Diversity in Several Egyptian Wheat Genotypes under Normal and Drought Conditions. Int J Agron 3, 1-14.
Sharaf-Eldin MA, Alam P, Elkholy SF (2019) Molecular and chemical characterization of mutant and nonmutant genotypes of saffron grown in Saudi Arabia. Food Sci Nutr 7(1), 247-255.
Shokrpour M (2019) Saffron (Crocus sativus L.) breeding: opportunities and challenges. Advances in plant breeding strategies. Ind Crops Prod 675-706.
Sivasankar S (2022) New CRP: Radiation-induced Crop Diversity and Genetic Associations for Accelerating Variety Development. IAEA, D24015.
Smith JSC, Kresovich S, Hopkins MS, et al. (2000) Genetic diversity among elite sorghum inbred lines assessed with simple sequence repeats. Crop sci 40(1), 226-232.
Torricelli R, Yousefi JAVAN, Albertini E, et al. (2019) Morphological and molecular characterization of Italian, Iranian and Spanish saffron (Crocus sativus L.) accessions. Appl Ecol Environ Res 17, 1875-1887.
Tu Anh TT, Khanh TD, Dat TD, Xuan TD (2018) Identification of phenotypic variation and genetic diversity in rice (Oryza sativa L.) mutants. Agriculture 8(2), 30.