پویش ژنومی نشانه‌های انتخاب واگرا بین نژاد‌های اسب ترکمن و تروبرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران

چکیده

چکیده
هدف انتخاب طی سالیان متمادی موجب بروز تغییراتی در سطح ژنوم می‌شود که این ردپا‌ها با بکارگیری روش‏های مولکولی نسل جدید قابل شناسایی می‌باشند. این مطالعه با هدف پویش کل ژنوم برای شناسایی مناطقی از ژنوم در اسب‌های تروبرد و ترکمن که هدف انتخاب‌های طبیعی یا مصنوعی قرار گرفته‌اند، انجام شد.
مواد و روش‌ها: استخراج DNA از نمونه‌های خون با استفاده از روش بهینه نمکی انجام شد. کیفیت و کمیت DNA استخراج شده ی تمام نمونه‌ها توسط دستگاه نانودراپ با نسبت جذبی روی محلولDNA تعیین شد. تعداد 44 راس اسب نژاد تروبرد و تعداد 67 راس اسب نژاد ترکمن بوسیله آرایه‌های ژنومی60k SNP Chips تعیین ژنوتایپ و با استفاده از دو روش کلی تمایز جمعیتی و روش‌های عدم تعادل پیوستگی، نشانه‌های انتخاب در سطح ژنوم پیگیری شدند. جهت شناسایی ساختار ژنتیکی جمعیتی حیوانات و نژادهای مورد مطالعه و شناسرایی نمونه‌هایی که خارج از گروه نژادی خود قرار گرفتند، آنالیز مولفه‌های اصلی در محیط برنامه R صورت گرفت.
نتایج: بررسی تمایز جمعیتی با استفاده از روش شاخص تثبیت (Fst) تصحیح شده برای اندازه نمونه (θ) نشان داد که در چندین مکان ژنی شواهدی از انتخاب در این دو نژاد وجود دارد. نشانه‌های انتخاب در پنج ناحیه ژنومی شناسایی شد. این نواحی بر روی کروموزوم‌های شماره‌ی 4، 5، 10، 13و 15 قرار داشتند. به منظور ارزیابی نشانه‌های انتخاب بر پایه روش‌های عدم تعادل پیوستگی از آزمون هموزیگوسیتی هاپلوتایپی بسط داده شده، استفاده شد. نتایج این آزمون، وجود تفرق جمعیتی در این مناطق ژنومی را تایید کرد. در نهایت بررسی QTL‌ها در مناطق اورتولوگوس گاوی نشان داد که این مناطق با صفات طول بدن، وزن بدن، عمق سینه و دیگر صفات مهم اقتصادی در اسب ارتباط دارند.
نتیجه‌گیری: تحقیق حاضر در شناسایی مناطقی از ژنوم دو نژاد اسب ترکمن و تروبرد که به صورت واگرا تحت انتخاب قرار گرفته‌اند و شناسایی ژن هایی که در این مناطق وجود دارند مؤثر بود. همچنین، اطلاعات مفیدی از وجود تنوع ژنتیکی و نشانه-های انتخاب بین این دو نژاد اسب حاصل شد.

کلیدواژه‌ها


عنوان مقاله [English]

Scanning genomic signatures of selection Turkoman and thoroughbred horse breeds

نویسندگان [English]

  • Milad Hosseini 1
  • Hossein Moradi Shahrbabak 2
1 Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2
چکیده [English]

Abstract
Objective
When continuous selection is carried out over years, it creates effects on the genome level, which can be detected by using some strategies. This study was carried out with the aim of scanning the whole genome to identify regions of the genome in Thoroughbred and Turkoman horses that have been targeted by natural or artificial selection.
Materials and Methods
DNA was extracted from blood samples using the optimal salt method. The quality and quantity of extracted DNA of all samples was determined by nanodrop device with absorption ratio on DNA solution. For this purpose, 44 Thoroughbred horses and 67 Turkoman horses were genotyped by genomic arrays of 60k SNP chips. By two general methods of population differentiation and linkage disequilibrium methods, the selection signatures at the genome level were looked into. In order to identify the population genetic structure of the studied animals, principal component analysis was done in R program.
Results
The study of population differentiation using the fixation index method (Fst) corrected for the sample size (θ) showed that there are evidences of selection in several loci in these two breeds. A number of five genomic regions were identified in which there were signatures of selection. These areas are located on chromosomes 4, 5, 10, 13 and 15. In order to evaluate the signatures of selection based on linkage disequilibrium methods, the extended haplotype homozygosity test (EHH) was used. The results confirmed the existence of population segregation in these genomic regions. Finally, the investigation of QTLs in the bovine orthologous regions showed that these regions are related to the traits of body length, body weight, chest depth and other important economic traits in horses.
Conclusions
The present research was effective in identifying regions of the genome of the two breeds of Turkoman and Thoroughbred horses being divergently selected, and identifying the genes that exist in these regions. Also, useful information was obtained on the existence of genetic diversity and signatures of selection between these two horse breeds.

کلیدواژه‌ها [English]

  • Keywords: genomic scanning
  • selection signature
  • Thoroughbred horse
  • Turkoman horse
  • segregating population
اسدالله پور نعنایی  حجت، نصرتی مریم، محمدآبادی محمدرضا (1400) بررسی ساختار ژنتیکی جمعیت اسب آخال-تکه و مقایسه آن با نژادهای دیگر با استفاده از داده های تعیین توالی کل ژنوم. فصلنامه ژنتیک نوین 16(4)، 307-299.
عرب پور رق آبادی زهرا، محمدآبادی محمدرضا، خضری امین (1400) الگوی بیانی ژن p32 در بافت‌های ران، دست، راسته و چربی پشت بره کرمانی. مجله بیوتکنولوژی کشاورزی، 13(4)، 183-200.
محمدی فر آمنه، محمدآبادی محمدرضا (1390) کاربرد نشانگرهای ریزماهواره برای مطالعه ژنوم گوسفند کرمانی. مجله علوم دامی ایران 42(4)، 344-337.
جعفری احمدآبادی سید علی اصغر، عسکری­همت حشمت­اله، محمدآبادی محمدرضا (1402) تاثیر شاهدانه بر بیان ژن DLK1 در بافت‌ قلب بره‌های کرمانی. مجله بیوتکنولوژی کشاورزی، 15(1)، 217-234.
شکری سمیرا، خضری امین، محمدآبادی محمدرضا، خیرالدین حمید (1402) بررسی بیان ژن MYH7  در بافت‌های ران، دست و راسته بره‌های پرواری نژاد کرمانی. مجله بیوتکنولوژی کشاورزی، 15(2)، 217-236.
References
Akey JM, Zhang G, Zhang K, et al.  (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res 12, 1805-1814.
Amiri Roudbar M, Mohammadabadi MR, Mehrgardi AA, Abdollahi-Arpanahi A (2017) Estimates of variance components due to parent-of-origin effects for body weight in Iran-Black sheep. Small Rum Res 149, 1-5.
Amiri Roudbar M, Abdollahi-Arpanahi R, Ayatollahi Mehrgardi A, et al. (2018) Estimation of the variance due to parent-of-origin effects for productive and reproductive traits in Lori-Bakhtiari sheep. Small Rumin Res 160, 95-102.
Arabpour Z, Mohammadabadi M, Khezri A. (2021) The expression pattern of p32 gene in femur, humeral muscle, back muscle and back fat tissues of Kermani lambs. Agric Biotechnol J 13 (4), 183-200 (In Persian).
Asadollahpour HN, Nosrati M, Mohammadabadi MR. (2021) Genetic structure analysis of Akhal-Teke horse population and comparison with other horse breeds by using whole genome sequencing data. Modern Genet J 16(4), 299-307 (In Persian).
Biswas S, Akey JM. (2006)  Genomic insights into positive selection. Trends Genet 22, 437-446.
Grimberg J, Nawoscihik S, Belluscio L, et al. (1989) A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res 17, 83-90.
Hayes BJChamberlain AJMaceachern S, et al. (2009) A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. Anim Genet 40, 176-184.
Hayes B,  Lien S, Nilsen H, et al. (2008) The origin of selection signatures on bovine chromosome 6. Anim Genet 39, 105-111.
Jafari Ahmadabadi SAA, Askari-Hemmat H, Mohammadabadi M, et al. (2023) The effect of Cannabis seed on DLK1 gene expression in heart tissue of Kermani lambs. Agric Biotechnol J 15 (1), 217-234 (In Persian).
Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press.
Masoudzadeh, SH, Mohammadabadi, MR, Khezri A, et al. (2020) Dlk1 gene expression in different Tissues of lamb. Iran J Appl Anim Sci 10, 669-677.
Mohamadipoor Saadatabadi L, Mohammadabadi M, Amiri Ghanatsaman Z, et al. (2021) Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet Res 17(1), 1-9.
Mohamadipoor Saadatabadi L, Mohammadabadi M, Nanaei HA, et al. (2023) Unraveling candidate genes related to heat tolerance and immune response traits in some native sheep using whole genome sequencing data. Small Rumin Res 10, 70-18.
Mohammadabadi M, Masoudzadeh SH, Khezri A, et al. (2021) Fennel (Foeniculum vulgare) seed powder increases Delta-Like Non-Canonical Notch Ligand 1 gene expression in testis, liver, and humeral muscle tissues of growing lambs. Heliyon 7 (12), e08542.
Mohammadabadi MR. (2016). Inter-Simple Sequence Repeat Loci associations with predicted breeding values of body weight in Kermani sheep. Genet 3rd Millennium 14, 4383-4390.
Mohammadifar A, Mohammadabadi MR. (2011) Application of Microsatellite Markers for a Study of Kermani Sheep Genome. Iran J Anim Sci 42 (4), 337-344 (In Persian).
Qanbari S,  Gianola D,  Hayes B. (2011) Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genom 12, 309-318.
Moradi MH, Nejati-Javaremi  A, Moradi-Shahrbabak  M, et al. (2012) Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet 13, 10-19.
MacEachern S, Hayes B, McEwan J, Goddard M. (2009) An examination of positive selection and changing effective population size in Angus and Holstein cattle populations (Bos taurus) using a high density SNP genotyping platform and the contribution of ancient polymorphism to genomic diversity in Domestic cattle. BMC Genom 10, 181-192.
Purcell S, Neale B, Todd-Brown K, et al. (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81, 559-575.
Qanbari S, Pausch H, Jansen S, et al. (2014) Classic Selective Sweeps Revealed by Massive Sequencing in Cattle. Plos Genet 10, e1004148.
Qanbari S, Strom TM, Haberer G, et al. (2012) A High Resolution Genome-Wide Scan for Significant Selective Sweeps: An Application to Pooled Sequence Data in Laying Chickens. Plos One 7(11), e49525.
Safaei SMH, Dadpasand M, Mohammadabadi M, et al. (2022) An Origanum majorana Leaf Diet Influences Myogenin Gene Expression, Performance, and Carcass Characteristics in Lambs. Animals 13 (1), e14.
Sabeti P, Reich DEHiggins JM, et al. (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832-837.
Sabeti P, Schaffner SFFry B, et al. (2006) Positive natural selection in the human lineage. Science 312, 1614-1620.
Sabeti P, Varilly PFry B, et al. (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913-918.
Shahsavari M, Mohammadabadi M, Khezri A, et al. (2022) Effect of Fennel (Foeniculum Vulgare) Seed Powder Consumption on Insulin-like Growth Factor 1 Gene Expression in the Liver Tissue of Growing Lambs. Gene Express 21 (2), 21-26.
The R Project for Statistical Computing: Free software environment for statistical computing and graphics. http:// www.r-project.org/.
Teo YY, Fry AE, Clark T G, et al. (2007) On the usage of HWE for identifying genotyping errors. Ann Hum Genet 71, 701-703.
Utsunomiya YT, Pe´rez O’Brien AM, Sonstegard TS, et al. (2013) Detecting Loci under Recent Positive Selection in Dairy and Beef Cattle by Combining Different Genome-Wide Scan Methods. Plos One 8(5), e64280.
Weir BS, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evol Biol 38, 1358-1370.