بررسی تنوع ژنتیکی و مطالعه ساختار جمعیت در گونه‌های آژیلوپس حاوی ژنوم U با استفاده از نشانگرهای CBDP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل دکتری گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل، ایران. محقق، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 استاد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل، ایران.

3 استادیار، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

4 استاد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

گونه‌های آژیلوپس حاوی ژنوم U دارای بیشترین پراکنش در سطح دنیا می‌باشند و با توجه به محدودیت تنوع ژنتیکی در گندم‌های زراعی اصلاح شده، استفاده از این خویشاوندان وحشی و سایر گونه‌های آژیلوپس می‌تواند به عنوان منبع ژنی غنی و متنوع از الل‌های جدید و ایده‌ال برای به‌نژاد‌گران مورد استفاده قرار گیرد. از این‌رو، هدف این تحقیق ارزیابی تنوع ژنتیکی و بررسی روابط و ساختار جمعیت در گونه‌های آژیلوپس جمع‌آوری شده از نواحی مختلف ایران با استفاده از نشانگرهای CBDP بود.
مواد و روش‌ها: در این مطالعه 77 توده وحشی آژیلوپس جمع‌آوری شده از 18 استان ایران و متعلق به پنج گونه Ae. biuncialis (ژنوم UUMM)، Ae. columnaris (ژنوم UUMM)، Ae. neglecta (ژنوم UUMM)، Ae. triuncialis (ژنوم UUCC) و Ae. umbellulata (ژنوم UU) با استفاده از 15 آغازگر CBDP مورد ارزیابی قرار گرفتند. پس از جمع‌آوری داده‌های مولکولی به دست آمده تجزیه و تحلیل‌های آماری با استفاده از نرم افزارهایGenAlEx ver. 6.502 ، DARwin ver. 6 و Structure ver. 2.3.4 انجام شد.
نتایج: با توجه به نتایج به‌دست آمده، 15 آغازگر CBDP در مجموع 189 قطعه چند شکل (27/95 درصد) تکثیر نمودند. شاخص محتوای اطلاعات چندشکلی (PIC) در آغازگرهای مورد مطالعه، دارای دامنه تغییرات 28/0 (CBDP15) تا 42/0 (CBDP-2 و CBDP-4) و با میانگین 35/0 بود. نتایج تجزیه واریانس مولکولی (AMOVA) بیشترین درصد واریانس ژنتیکی را درون گونه‌ها (76 درصد) نشان داد. بررسی شاخص‌های ژنتیکی نشان داد گونه Ae. triuncialis از تنوع بیشتری نسبت به سایر گونه‌ها برخوردار بود. بیشترین میزان تشابه ژنتیکی بین Ae. biuncialis و Ae. columnaris (905/0) و Ae. biuncialis و Ae. neglecta (879/0) مشاهده گردید. تجزیه خوشه‌ای بر اساس داده‌های به دست آمده منجر به تفکیک کلیه توده‌های مورد بررسی در سه گروه اصلی شد. الگوی گروه‌بندی به وجود آمده دقیقآً منطبق با ساختار ژنومی گونه‌ها بود و نتایج تجزیه به مختصات اصلی، نتایج به دست آمده را تأیید نمود. در بررسی تجزیه ساختار جمعیت نیز مطابق با نتایج تجزیه خوشه‌ای و PCoA، توده‌ها بر اساس ساختار ژنومی، میزان تشابه ژنتیکی، و تشابهات جغرافیایی گروه‌بندی‌ شدند.
نتیجه گیری: نتایج حاصل از این پژوهش بیانگر سودمندی بالای آغازگرهای CBDP در ارزیابی تنوع ژنتیکی موجود در گونه‌های ژرم‌پلاسمی آژیلوپس بود. از‌ این‌رو به نظر می‌رسد این نشانگرها قابلیت استفاده در برنامه‌های مرتبط با تهیه نقشه‌های ژنتیکی و مطالعات مولکولی فیلوژنتیک را دارند. همچنین وجود تنوع ژنتیکی بالا در میان برخی از گونه‌های آژیلوپس ایران می‌تواند چشم‌اندازه قابل توجهی را برای به‌نژادگران جهت استفاده از آن‌ها در برنامه‌های پیش‌اصلاحی

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of genetic diversity and study of population structure in Aegilops species with U genome by CBDP markers

نویسندگان [English]

  • Ali Sajjad Bokaei 1
  • Omid Sofalian 2
  • Behzad Sorkhilaleloo 3
  • Ali Asghari 4
  • Alireza Pour-Aboughadareh 3
1 Post Graduated Ph.D. student, Deptartment of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. In addition, Researcher, Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
2 Corresponding author. Professors, Deptartment of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Assistant Professors, Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
4 Professors, Deptartment of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Aegilops species possessing the U genome are the most widely distributed species in the world. Considering the limitation in the genetic diversity in cultivated wheat, the use of wild relatives and other species of Aegilops can be provided a rich and diverse gene pool of new and ideal alleles for breeders. Therefore, the main goals of the present study were investigation of genetic diversity and population structure in Aegilops accessions collected from different regions of Iran using the CBDP markers.
Materials and methods
In this study, the genetic diversity among 77 Aegilops accessions collected from 18 provinces in Iran and belonging to five species including Ae. biuncialis (UUMM genome), Ae. columnaris (UUMM genome) Ae. Neglecta (UUMM genome), Ae. triuncialis (UUCC genome), Ae. umbellulata (UU genome) , was evaluated using 15 CBDP primers. The obtained molecular data were subjected to statistical analyses using GenAlEx ver. 6.502, DARwin ver. 6, and Structure ver. 2.3.4 softwares.
Results
A total of 189 polymorphic fragments were amplified using 15 used CBDP primers (95.27%). The PIC index ranged from 0.28 (CBDP15) to 0.42 (CBDP-2 CBDP-4) with an average of 0.35. The results of analysis of molecular variance (AMOVA) revealed that the highest proportion of genetic variance referred to within species (76%). Among all species, Ae. triuncialis showed the highest values of genetic parameters. The highest level of genetic similarity was found between Ae. biuncialis with Ae. columnaris (0.905) and Ae.biuncialis with Ae. neglecta (0.879). Although cluster analysis based on CBDP data classified all accessions into three main groups the grouping pattern was exactly in accordance with the genomic constitution of species. Moreover, the clustering pattern was confirmed by a principal coordinate’s analysis (PCoA). The population structure analysis further confirmed the results obtained from the cluster analysis and PCoA, so all studied accessions were grouped based on their genomic structure, degree of genetic similarity, and geographic similarities.
Conclusion
Results of the present study showed a high usefulness of CBDP markers in evaluating the genetic diversity in the Aegilops germplasm. Therefore, it seems that this marker technique can be used in programs related to the preparation of genetic maps and molecular phylogenetic studies. Also, the existence of high genetic diversity among some Iranian Aegilops species can provides a significant prospect for breeders to use them in pre-breeding programs in wheat.

کلیدواژه‌ها [English]

  • Aegilops
  • population structure analysis
  • genetic diversity
  • molecular markers
عبدالهی مندولکانی بابک، عزیزی حیدر، پیری یاسر و همکاران (1395) تجزیه ارتباط صفات مورفولوژیک در یونجه زراعی با استفاده از نشانگرهای مولکولی. پژوهشنامه اصلاح گیاهان زراعی. 8 (19)، 52-60.
عسکری ناهید، باقی زاده امین، محمدآبادی محمدرضا (1389). مطالعه تنوع ژنتیکی در چهار جمعیت بز کرکی راینی با استفاده از نشانگرهای ISSR. مجله ژنتیک نوین 5، 56-49.
محمدی فر آمنه، فقیه ایمانی سید علی، محمدآبادی محمد رضا، سفلایی محمد (1392) تأثیر ژن TGFb3 بر ارزش های فنوتیپی و ارثی صفات وزن بدن در مرغ بومی استان فارس. مجله بیو تکنولوژی کشاورزی  5(4)، 125-136.
محمدی فر آمنه، محمدآبادی محمد رضا کاربرد نشانگرهای ریزماهواره برای مطالعه ژنوم گوسفند کرمانی (1390). مجله علوم دامی                                            ایران 42(4)، 337-344.
References
Abbasov M, Sansaloni CP, Burgueño J, et al. (2020) Genetic diversity analysis using DArTseq and SNP markers in populations of Aegilops species from Azerbaijan. Genet Resour Crop Evol 67, 281-291.
Abdollahi Mandoulakani B, Azizi H, Piri Y, et al. (2016) Association analysis for morphological traits in cultivated alfalfa using molecular markers. Crop Breed 8, 19 (In Persian).
Aghaee-Sarbarzeh M, Singh H, Dhaliwal HS (2001) A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breed 120, 259–261.
Ahmad NS (2023) Assessment of genetic relation for different ploidy levels of aegilops and triticum possessing different genome-bearing species using start codon target marker. Genet Resour Crop Evol. doi.org/10.21203/rs.3.rs-3171739/v1
Alinaghizadeh R, Mohammad Abadi MR, Moradnasab Badrabadi S (2007) Kappa-casein gene study in Iranian Sistani cattle breed (Bos indicus) using PCR-RFLP. Pakistan J Biol Sci 10 (23), 4291-4294.
Arora S, Kaur S, Dhillon GS, Singh R, et al. (2021) Introgression and genetic mapping of leaf rust and stripe rust resistance in Aegilops triuncialis. J Genet 100, 1-11.
Arystanbekkyzy M, Nadeem MA, Aktaş H, et al. (2019) Phylogenetic and taxonomic relationship of turkish wild and cultivated emmer (Triticum turgidum ssp. dicoccoides) revealed by IPBS-retrotransposons markers. Intl J Agric Biol 21, 155‒163.
Askari N, Baghizadeh A, Mohammadabadi MR (2010) Study of genetic diversity in four populations of Raeini cashmere goat using ISSR markers. Modern Genet J 5 (2), 49-56 (In Persian).
Askari N, Baghizadeh A, Mohammadabadi MR (2008) Analysis Of The Genetic Structure Of Iranian Indigenous Raeni Cashmere Goat Populations Using Microsatellite Markers. Biotechnology 2 (3), 1-4.
Bokaei AS, Sofalian O, Sorkhilalehloo B, et al. (2023) Deciphering the level of genetic diversity in some aegilops species using CAAT box-derived polymorphism (CBDP) and start codon target polymorphism (SCoT) markers. Mol Biol Rep 50 (7), 5791-5806.
Collard BCY, Mackil DJ (2009) Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating genetargeted markers in plants. Plant Mol Biol Rep 27, 86–93.
Doyle JJ, Doyle JL  (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull 19 (1), 11-15.
Dumolin-Lapegue S, Demesure B, Fineschi S, et al. (1997) Phylogeographic structure of white oaks throughout the European continent. Genet 146 (4), 1475-1487.
Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet  97, 657-670.
Eslamzadeh-Hesari MR, Omidi M, Rashidi V, et al. (2023) Investigation of molecular variability in some aegilops species using start codon targeted polymorphism (SCoT) and CAAT-box derived polymorphism (CBDP) markers. Genetika 55 (1), 19-32.
Etminan A, Pour-Aboughadareh A, Mehrabi AA, et al. (2019) Molecular characterization of the wild relatives of wheat using CAAT-box derived polymorphism. Plant Biosyst 153 (3), 398-405.
Etminan A, Pour-Aboughadareh A, Mohammadi R, et al. (2018) Applicability of CAAT- box-derived polymorphism (CBDP) markers for analysis of genetic diversity in durum wheat. Cereal Res Commun 46, 1-9.
Ghasemi M, Baghizadeh A, Mohammadabadi MR (2010) Determination of genetic polymorphism in Kerman Holstein and Jersey cattle population using ISSR markers. Aust J Basic Appl Sci 4 (12), 5758-5760.
Ghobadi G, Etminan A, Mehrabi AM, Shooshtari L (2021) Molecular diversity analysis in hexaploid wheat (triticum aestivum l.) and two aegilops species (aegilops crassa and aegilops cylindrica) using CBDP and scot markers. J Genetic Eng  Biotechnol 19, 1-11.
Gholamhoseini F, Mohammadabadi MR, Asadi Fozi M (2018) Polymorphism of the growth hormone gene and its effect on production and reproduction traits in goat. Iran J Appl Anim Sci 8 (4), 653-659.
Gooki FG, Mohammadabadi MR, Fozi MA, Soflaei M (2019) Association of Biometric Traits with Growth Hormone Gene Diversity in Raini Cashmere Goats. Walailak J Sci Technol 16 (7), 499-508.
Hamidi H, Talebi R, Keshavarz F (2014). Comparative efficiency of functional gene based markers, start codon targeted polymorphism (SCoT) and conserved DNA derived polymorphism (CDDP) with ISSR markers for diagnostic fingerprinting in wheat (triticum aestivum L.). Cereal Res Commun 42, 558–567.
Hoban S, Bruford MW, da Silva JM, et al. (2023) Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. Conserv Genet 24 (2), 181-191.
Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genet 160 (4), 1651-1659.
Khodaee L, Azizinezhad R, Etminan AR, Khosroshahi M (2021) Assessment of genetic diversity among iranian aegilops triuncialis accessions using ISSR, scot, and CBDP markers. J Genet Eng Biotechnol 19 (1), 1-9.
Kihara H (1963) Interspecific relationships in Triticum and Aegilops. Seiken Ziho. 15, 1-12.
Kumar A, Choudhary A, Kaur H, Mehta S (2022) A walk towards wild grasses to unlock the clandestine of gene pools for wheat improvement: a review. Plant stress 3, p100048.
Liu Z, Yan Z, Wan Y, et al. (2003) Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theor Appl Genet 106 (8), 1368-1378.
Milbourne D, Meyer R, Bradshaw JE, et al. (1997) Comparison  of  PCR-based  marker  systems  for  the  analysis  of  genetic  relationships in cultivated potato. Mol Breed 3, 127-136.
Mohammadabadi MR (2017) Inter-Simple Sequence Repeat loci Associations with Predicted Breeding Values of Body Weight in Kermani Sheep. Genet 3rd Millennium 14 (4), 4383-4390.
Mohammadabadi MR, Esfandyarpoor E, Mousapour A (2017) Using Inter Simple Sequence Repeat Multi-Loci Markers for Studying Genetic Diversity in Kermani Sheep. J Res Develop 5 (2), e154.
Mohammadifar A, Faghih Imani SA, Mohammadabadi MR, Soflaei M (2014) The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agric Biotechnol J 5 (4), 125-136 (In Persian).
Mohammadifar A, Mohammadabadi MR (2018) Melanocortin-3 receptor (MC3R) gene association with growth and egg production traits in fars indigenous chicken. Malays Appl Biol 47 (3), 85-90.
Mohammadifar A, Mohammadabadi MR (2011) Application of Microsatellite Markers for a Study of Kermani Sheep Genome. Iran J Anim Sci 42 (4), 337-344 (In Persian).
Molnar I, Vrana J, Buresova V, et al. (2016) Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat.  Plant J 88 (3), 452-467.
Morris R, Sears ER, Qisenberry KS, Reitz LP (1967) The cytogenetics of wheat and its relatives. Wheat and wheat improvement.  Madison Wisconsin; Am Society Agron Monogr 19-87.
Poczai P, Varga I, Bell NE, Hyvonen J (2012) Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment, The molecular basis of plant genetic diversity, Prof Mahmut Caliskan (Ed), ISBN. 953-978.
Poczai P, Varga I, Laos M, et al. (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9, 1-32..
Pour-Aboughadareh A, Kianersi F, Poczai P, Moradkhani H (2021) Potential of wild relatives of wheat: ideal genetic resources for future breeding programs. Agron 11 (8), 1656.
Pour-Aboughadareh A, Poczai P, Etminan A, et al. (2022) An analysis of genetic variability and population structure in wheat germplasm using microsatellite and gene-based markers. Plants 11 (9), 1205.
Powell W, Morgante M, Andre C, et al. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2, 225-238.
Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor and appl Genet. 98, 107-112.
Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations.  Am J Hum Genet 67 (1), 170-181.
Prohens J, Gramazio P, Plazas M, et al. (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213, 1-19.
Przewieslik-Allen AM, Burridge AJ, Wilkinson PA, et al. (2019) Developing a high-throughput SNP-based marker system to facilitate the introgression of traits from Aegilops species into bread wheat (triticum aestivum). Front Plant Sci 9, 1993.
Sazmosi C, Solmaz I, Sari N, Barsony C (2010) Morphological evaluation and comparison of Hungarian and Turkish melon (cucumis melo L.) germplasm. Sci Hortic 124, 170-182.
Schneider A, Molnar I (2008) Utilisation of agilops (goat grass) species to widen genetic diversity of cultivated wheat. Euphytica 163, 1-19.
Shaygan N, Etminan A, Majidi Hervan I, et al. (2021) The study of genetic diversity in a minicore collection of durum wheat genotypes using agro-morphological traits and molecular markers. Cereal Res Commun 49, 141-147.
Singh AK, Rana MK, Singh S, et al. (2014) CAAT box- derived polymorphism (CBDP): a novel promoter -targeted molecular marker for plants.  J Plant Biochem Biotechnol 23, 175–183.
Tadesse W, Sanchez-Garcia M, Gizaw Assefa S, et al. (2019) Genetic gains in wheat breeding and its role in feeding the world. Crop Breed Genet Genom 1(e190005), 1-28
Thomas KG, Bebeli PJ (2010) Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Mol Phylogenet  Evol 56 (3), 951-961.
Tsunewaki K (1996) Plasmon analysis as the counterpart of genome analysis. Methods of genome analysis in plants. New York. CRC Press 271-299.
Van Slageren MW (1994) Wild wheats; a monograph of Aegilops l. and amblyopyrum (jaub. & spach) eig (poaceae). Agricultural University Wageningen: the Netherlands; ICARDA: Aleppo, Syria. 512.
Xing X, Monneveux P, Damania AB, Zarahieva M (1993) Evaluation for salt tolerance in genetic resources of Triticum and Aegilops species. FAO/IPGRI Plant Genet Resour 96, 11-16.