Mapping of QTLs Affecting Salinity Tolerance in Iranian Rice Population at Germination Stage

Document Type : Research Paper

Authors

1 M.Sc. student of Biotechnology Crop, Department of Agronomy & Plant Breeding, Faculty of Agricultural Sciences, University of Gonbad, Iran. University Gonbad.

2 Associate professor of plant production department, Gonbad kavus University

3 Horticulture biotechnology Ph.D, Assistant Professor, Department of Plant Production, Faculty of Agricultural and Natural resources Sciences, Gonbad Kavoos University.Iran.

4 Crop physiology Ph.D, Assistant Professor, Department of Plant Production, Faculty of Agricultural and Natural resources Sciences, Gonbad Kavoos University.Iran.

5 Department of Plant Production, Faculty of Agricultural and Natural resources Sciences, Gonbad Kavoos University.Gonbad Kavoos. Iran

Abstract

Objective
This experiment was conducted for developing of linkage map using SSR and ISSR markers in Iranian rice population, mapping of QTLs involved in salinity tolerance, and also evaluation of salinity tolerance in studied genotype.
 
Materials and Methods
In order to determine the salinity tolerance QTLs in a germination stage on an Iranian rice population (caused Ahlami Tarom × Neda cross), a factorial experiment was performed based on a randomized complete block design with three replications under three salinity levels of NaCl (0, 12, 22 dS.m-1).
 
Results
The difference between populations in different levels of salinity was significant for all germination traits. Under normal conditions, 4, 1, 2 and 1 QTLs were detected for radicle weight, plumule weight, germination percentage and germination rate, respectively. In 12 dS.m-1, 1, 1, 1, 2, 1 and 1 QTL for seedling weights, plumule weight, radicle length, coleoptile, germination percentage and germination rate. In 22 dS.m-1, 2, 1, 1 and 1 QTL were located for radicle weight, plant length, germination percentage and germination rate.
 
Discussion
The major effects of QTLs in this study played an important role in salinity tolerance and can be studied in marker assisted selection programs in rice under saline conditions.

Keywords


 

ابوذری گزافرودی ابوذر، هنرنژاد رحیم، فتوکیان محمد حسین (1387) بررسی تنوع ژنتیکی ارقام برنج با استفاده از داده­های     صفات مورفولوژیکی. مجله پژوهش و سازندگی. 21(1)، 110-117

آقا علی زهرا، درویش زاده رضا، فرناز گودرزی (1395) تجزیه ارتباط صفات مورفولوژیک در کرچک (Ricinus communis L) با استفاده از نشانگرهای ISSR. مجله تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران. 24(1)، 79-91.

جوادی حامد، ثقه الاسلامی محمدجواد، موسوی سید غلامرضا (1393) بررسی اثر شوری بر جوانه زنی و رشد اولیه گیاهچه چهار گونه گیاه دارویی. نشریه پژوهشهای زراعی ایران. 12(1)، 53-64.
حسینی سالکده قاسم، نقدی محمدرضا، قره­یاضی بهزاد (1393) نشانگرهای مولکولی. انتشارات دانشگاه تهران. 341 صفحه.

ربیعی بابک، مردانی زهرا، قمی خدیجه و همکاران (1393) اثر کروموزوم شماره یک برنج بر صفات مرتبط با تحمل به شوری و خشکی در مراحل جوانه‌زنی و گیاهچه‌ای. مجله به­نژادی نهال و بذر. 30(1)، 1-16.

صیوری حسین، رضایی عبدالمجید، مومنی علی (1387) ارزیابی تحمل به شوری در ارقام بومی و اصلاح شده برنج ایرانی. مجلهعلوم و فنون کشاورزی و منابع طبیعی. 12(45)، 47-63.

فرشادفر عزت الله (1389) مباحث نوین در ژنتیک بیومتری. انتشارات دانشگاه آزاد اسلامی. 521 صفحه

مردانی زهرا (1390) شناسایی نشانگرهای مولکولی پیوسته به ژن های تحمل به شوری در مرحله جوانه زنی برنج. پایان نامه کارشناسی ارشد. دانشگاه گیلان.
میرمحمدی‌میبدی علی محمد، قره­یاضی بهزاد (1381) جنبه­های فیزیولوژیک و بهنژادی تنش شوری در گیاهان. انتشارات دانشگاه صنعتی اصفهان. 288 صفحه.
 
References
Chen H, An R, Tang JH et al. (2007) Over-expression of avacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed 19, 215–225.
Flowers TJ, Koyama ML, Flowers SA et al. (2000) QTL: Their place in engineering tolerance of rice to salinity. J Exp Bot 51, 99–106.
Flowers TJ, Yeo AR (1981) Variability in the resistance of sodium chloride salinity within rice (Oryzasativa L.) varieties. New Phytologist81, 363–373.
Glenn A (2008) Allelopathic interference of invasive Acacia dealbata on the rice seedling growth, 5th World Congress on Allelopathy, New York, USA.
Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Bio 57, 461-485.
Haq TU, Akhtar J, Gorham J, Steele KA (2010) Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Func Plant Bio 37, 634–645.
Jing W, Jiang L, Zhang WW et al. (2008) Mapping QTL for Seed Dormancy in Weedy Rice. Acta Agron Sinica 34, 737-742.
Kanbar A, Shashidhar HE, Hittalmani S (2002) Mapping of QTL associated with root and related traits in DH population of rice (Oryza sativa L.). Indian J Genet Plant Breed 62, 287-290.
Khumallambam DD, Kshetrimayum P, Nandeibam SS, Huidrom SD (2013) An efficient protocol for total DNA extraction from the members of order Zingiberales-suitable for diverse PCR based downstream applications. Springer Plus 2, 1-9.
Kosambi DD (1944) The estimation of map distances from recombination values. Annu Eug 12, 172-175.
Koyama ML, Levesley A, Koebner RMD et al.  (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125, 406–422.
Lafite HR, Ismail A, Bennet J (2004) Abiotic stress tolerance in rice for Asia: Progress and the future. New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress. Brisbane, Australia.
Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genet 121, 185–99.
Lee SY, Ahn JH, Cha YS et al.  (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed 126, 43–46.
Lisa LA, Seraj ZI, Elahi CMF et al.  (2004) Genetic variation in microsatellite DNA, physiology and morphology of coastal saline rice (Oryzasativa L.) landraces of Bangladesh. Plant and Soil 263, 213–228.
McCouch SR, Cho YG, Yano PE et al.  (1997) Report on QTL nomenclature Rice Genet. Newsletter 14,11-13.
Mishra B, Singh RK, Jetly V (1998) Inheritance pattern of salinity tolerance in rice. J Genet Breed 52, 325–331.
Mishra B (1996) Highlights of Research on Crops and Varieties for Salt Affected Soils. Karnal, India: CSSRI.
Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13, 143–160.
Oh SJ, Kwon CW, Choi DW et al.  (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotech J l5, 646–656.
Prasad SR, Bagali P, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Current Sci78, 162–164.
Sankar PD, Subbaraman N, Narayanan SL (2006) Ranking of salt tolerant rice lines based on germination and seedling growth under salt stress conditions. Field Crops Res 7, 798–803.
Singh KN (1994) Crops and agronomic management. In: Rao E.A., ed. Salinity Management for Sustainable Agriculture 25 Years of Research at CSSRI. Karnal, India: Central Soil Salinity Research Institute. pp. 124–144.
Singh RK, Redoña E, Gregorio GB et al.  (2009) Right rice in the right place: Systematic exchange and farmer-centered evaluation of rice germplasm for salt-affected areas. In: Hoanh C.T., Szuster B., Kam S.P., Noble A., and M I.A., eds. Tropical Deltas and Coastal Zones Community, Environment and Food Production at the Land-Water Interface. CABI Publishing.
Singh RK, Mishra B, Jetly V (2001) Segregations for alkalinity tolerance in three rice crosses. Sabrao J Breed Genet. 33, 31–34.
Wang ZF, Wang JF, Bao YM et al.  (2010) Inheritance of Rice Seed Germination Ability under Salt Stress. Rice Sci 17, 105-110.
Zeng LH, Kwon TR, Liu XA et al.  (2004) Genetic diversity analyzed by microsatellite markers among rice (Oryza sativa L.) genotypes with different adaptations to saline soils. Plant Sci 166, 1275–1285.