Identification of key genes and microRNAs involved in the Androctonus Crassicauda apoptosis pathway

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran.

2 Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran.

Abstract

Objective
The occurrence of planned cell death or apoptosis as a protected method is controlled by a number of genes that used to remove unnecessary cells. This cellular event is involved in immune and disease-related systems. Apoptosis is a cellular regulatory mechanism that balances the effects of cell proliferation and cell death. In the path of apoptosis, many genes and molecules are involved. Recently, developments using the RNAseq technique have shown that microRNAs play an important role in regulating planned cell death or apoptosis. The purpose of this study was to identify key genes and micro-RNAs affecting the apoptosis pathway in Androctonus crassicauda scorpions.
 
Materials and methods
In this study, after transcriptome sequencing of venom glands of A. crassicauda scorpions using Illumina HiSeq 2000 platform and transcriptome assembly using Trinity software, the most important transcripts of the scorpion venom gland involved in apoptosis were identified using the KEGG database. Drawing of the apoptosis gene network with String software, analyzing the network of protein interactions and identifying key genes using cytoscape software and investigating the ontology of genes by the WebGestalt database were done. In addition, after identifying the scorpion microRNAs using homogeneous searches, the MRTarBase, TarBase, miRecords, and MirNet software programs were utilized to prediction of target genes and drawing a protein-microRNA interaction network.
Results
Three pathways associated with apoptosis were identified, and 103 proteins were extracted from those. The results of protein network analysis revealed that 30 key genes involved in apoptosis were identified that according to obtained results, the most effective key genes involved in apoptosis are Akt1, bsk, Jra, Dronc, and rl. The results of statistical analysis of protein-microRNA interaction network also showed that mir-7-5p microRNA has the highest value.
Conclusions
The results of this study showed that microRNAs play an essential role in the regulation of many genes in the apoptosis pathway and can be used to regulate the expression of genes.

Keywords


احسنی محمدرضا، محمدآبادی محمدرضا ، اسدی فوزی و همکاران (1398) بیان ژن لپتین در بافت چربی زیرپوستی گاوهای هلشتاین با استفاده از Real Time PCR. مجله بیوتکنولوژی کشاورزی 11(1)، 150-135.
توحیدی نژاد فاطمه، محمدآبادی محمدرضا، اسمعیلی زاده کشکوئیه علی، نجمی نوری عذرا (1393) مقایسه سطوح مختلف بیان ژنRheb  در بافت‌های مختلف بز کرکی راینی. مجله بیوتکنولوژی کشاورزی 6(4)، 50-35.
جعفری دره در امیر حسین، محمدآبادی محمدرضا، اسمعیلی زاده کشکوئیه علی، ریاحی مدوار علی (1395) بررسی بیان ژن CIB4  در بافت‌های مختلف گوسفند کرمانی با استفاده از Real Time qPCR. مجله پژوهش در نشخوارکنندگان 4(4)، 132-119.
محمدآبادی محمدرضا، کرد محبوبه، نظری محمود (1397) مطالعه بیان ژن لپتین در بافت‌های مختلف گوسفند کرمانی با استفاده از Real Time PCR. مجله بیوتکنولوژی کشاورزی 10(3)، 122-111.
References
Abdel-Rahman MA, Quintero-Hernandez V, Possani LD (2013) Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon 74, 193-207.
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019a) Leptin gene expression in subcutaneous adipose tissue of Holstein dairy cattle using Real Time PCR. Agric Biotechnol J 11, 135-150 (In Persian).
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019b) Effect of Roasted Soybean and Canola Seeds on Peroxisome Proliferator‐Activated Receptors Gamma (PPARG) Gene Expression and Cattle Milk Characteristics. Iran J Appl Anim Sci 9, 635-642.
Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33, 2697-2706.
Ambros V (2004) The functions of animal microRNAs. Nature 431, 350-355.
Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2.
Bucaretchi F, Fernandes LC, Fernandes CB, et al. (2014) Clinical consequences of Tityus bahiensis and Tityus serrulatus scorpion stings in the region of Campinas, southeastern Brazil. Toxicon 89, 17-25.
Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 10, 1957-1966.
Chakrabarti M, Ray SK (2016) Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis 21, 312-328.
Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes & development 13, 2905-2927.
Denli AM, Tops BB, Plasterk RH, et al. (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235.
Dennis G, Sherman BT, Hosack DA, et al. (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome biology 4, 1-11.
Förstemann K, Tomari Y, Du T, et al. (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3, e236.
Green BD, Jabbour AM, Sandow JJ, et al. (2013) Akt1 is the principal Akt isoform regulating apoptosis in limiting cytokine concentrations. Cell Death & Differentiation 20, 1341-1349.
Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer research 65, 3509-3512.
Griffiths-Jones S, Grocock RJ, Van Dongen S, et al. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research 34, D140-D144.
Hu C, Zhu S, Wang J, et al. (2019) Schistosoma japonicum MiRNA-7-5p inhibits the growth and migration of hepatoma cells via cross-species regulation of S-phase kinase-associated protein 2. Frontiers in oncology 9, 175.
Kefas B, Godlewski J, Comeau L, et al. (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer research 68, 3566-3572.
Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. British journal of cancer 26, 239-257.
Kim AH, Khursigara G, Sun X, et al. (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Molecular and cellular biology 21, 893-901.
Kim Y-W, Kim EY, Jeon D, et al. (2014) Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells. Drug design, development and therapy 8, 293.
Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269-2271.
Li JZ-H, Gao W, Lei W-B, et al. (2016) MicroRNA 744-3p promotes MMP-9-mediated metastasis by simultaneously suppressing PDCD4 and PTEN in laryngeal squamous cell carcinoma. Oncotarget 7, 58218.
Liu M-L, Zhang Q, Yuan X, et al. (2018) Long noncoding RNA RP4 functions as a competing endogenous RNA through miR-7-5p sponge activity in colorectal cancer. World journal of gastroenterology 24, 1004.
Lohse M, Bolger AM, Nagel A, et al. (2012) RobiNA: A user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic acids research 40, W622-W627.
Mohammadabadi MR, Tohidinejad F (2017) Charachteristics determination of Rheb gene and protein in Raini Cashmere goat. Iran J Appl Anim Sci 7, 289-295.
Mohammadabadi MR, Jafari AHD, Bordbar F (2017) Molecular analysis of CIB4 gene and protein in Kermani sheep. Brazil J Med Biol Res 50, e6177.
Mohammadabadi MR, Kord M, Nazari M (2018) Studying expression of leptin gene in different tissues of Kermani Sheep using Real Time PCR. Agric Biotechnol J 10, 111-122 (in Persian).
Rendón-Anaya M, Delaye L, Possani LD, Herrera-Estrella A (2012) Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. PloS one 7, e43331.
Shi Y, Luo X, Li P, et al. (2015) miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGγ. Cancer letters 358, 27-36.
Song W-H, Feng X-J, Gong S-J, et al. (2015) microRNA-622 acts as a tumor suppressor in hepatocellular carcinoma. Cancer biology & therapy 16, 1754-1763.
Tohidi nezhad F, Mohammadabadi MR, Esmailizadeh AK, Najmi Noori A (2015) Comparison of different levels of Rheb gene expression in different tissues of Raini Cashmir goat. Agric Biotechnol J 6, 35-50.
Visalli M, Bartolotta M, Polito F, et al. (2018) miRNA expression profiling regulates necroptotic cell death in hepatocellular carcinoma. International Journal of Oncology 53, 771-780.
Wu Y-F, Li Z-R, Cheng Z-Q, et al. (2017) Decrease of miR-622 expression promoted the proliferation, migration and invasion of cholangiocarcinoma cells by targeting regulation of c-Myc. Biomedicine & Pharmacotherapy 96, 7-13.
Xu M, Mo Y-Y (2012) The AKT-associated microRNAs. Cellular and molecular life sciences 69, 3601-3612.
Yang BF, Lu YJ, Wang ZG (2009) MicroRNAs and apoptosis: implications in the molecular therapy of human disease. Clinical and Experimental Pharmacology and Physiology 36, 951-960.
Yin CY, Kong W, Jiang J, et al. (2019) miR‑7‑5p inhibits cell migration and invasion in glioblastoma through targeting SATB1. Oncology letters 17, 1819-1825.
Zhang R, Luo H, Wang S, et al. (2015) MiR-622 suppresses proliferation, invasion and migration by directly targeting activating transcription factor 2 in glioma cells. Journal of neuro-oncology 121, 63-72.
Zheng Y, Nie P, Xu S (2020) Long noncoding RNA CASC21 exerts an oncogenic role in colorectal cancer through regulating miR-7-5p/YAP1 axis. Biomedicine & Pharmacotherapy 121, 109628.