The expression pattern of ZmNHX1, ZmHKT1, and ZmMYB30 genes in maize under salinity stress

Document Type : Research Paper

Authors

1 MSc. Agricultural Biotechnology, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.

2 Professor, Department of Plant Breeding and Biotechnology, Urmia University, Urmia, Iran and Institute of Biotechnology, Urmia University, Urmia, Iran

3 PhD Student in Plant Breeding, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.

Abstract

Objective
Environmental stresses affect the growth and development of crops during the growing season. Soil salinity is one of the most important environmental stresses that reduce crop yield. Understanding the mechanisms of coping with stress in plants at the molecular level can be effective in providing an efficient way to improve stress-tolerant plants. To save energy, plants do not express all their genes, simultaneously. Rather, depending on environmental conditions, they activate genes that are needed in a particular situation. For instance, in response to salinity stress, the expression of several genes in plants including HKT1 and NHX1 transporters is changed. In this study, variation in the expression of ZmHKT1 and ZmNHX1 genes along with the ZmMYB30 transcription factor were investigated in two salt-tolerant and salt- sensitive maize lines with real time polymerase chain reaction technology.
Materials and methods
Maize salt-tolerant line (P14L2) and salt-sensitive line (MO17) seeds were grown in plastic pots containing perlite and peat moss in 2:3 ratios under controlled conditions in growth chamber, and Hoagland solution was used to irrigate plants. In the eight-leaf stage, salinity stress from NaCl source was gradually applied to half of the pots starting from a concentration of 5 ds/m for three days, and from the fourth day onwards, salt stress was applied at a concentration of 8 ds/m for 7 days. The other half was used as control. Then, 24 hours (as short-time salt stress) and 7 days (as long-time salt stress) after the salinity stress, the roots and leaves of the plants were sampled in liquid nitrogen. RNA extraction was performed from leaf and root samples, and cDNA was then synthesized. Gene expression was assessed with real-time PCR. The Actin gene was used as the reference gene. The experiment was performed in 2 biological (experimental) and 3 technical (laboratory) replicates. Finally, the changes in the expression of genes were measured.
Results
Increased expression of ZmNHX1 gene in root tissue during the short-time and in leaf tissue during the long-time in the tolerant line, and also increased expression of ZmHKT1 gene in the root tissue during the long-time in the tolerant line compared to the sensitive line probably indicate a positive role of these genes in resistance to salinity stress in maize. The highest relative expression of MYB30 gene in both tolerant and sensitive lines was related to root tissue during the short-time, which over time a significant decrease in the expression of this gene was observed in both lines.
Conclusions
The results of this study can be potentially useful in maize breeding programs to produce salinity resistant cultivars.

Keywords


احسنی محمدرضا؛ محمدآبادی محمدرضا؛ اسدی فوزی و همکاران (1398) بیان ژن لپتین در بافت چربی زیرپوستی گاوهای هلشتاین با استفاده از Real Time PCR. مجله بیوتکنولوژی کشاورزی 11(1)، 150-135.
توحیدی نژاد فاطمه؛ محمدآبادی محمدرضا؛ اسمعیلی زاده کشکوئیه علی؛ نجمی نوری عذرا (1393) مقایسه سطوح مختلف بیان ژنRheb  در بافت‌‌های مختلف بز کرکی راینی. مجله بیوتکنولوژی کشاورزی 6(4)، ۴۹-3۷.
جعفری دره در امیر حسین؛ محمدآبادی محمدرضا؛ اسمعیلی زاده کشکوئیه علی؛ ریاحی مدوار علی (1395) بررسی بیان ژن CIB4  در بافت‌‌های مختلف گوسفند کرمانی با استفاده از Real Time qPCR. مجله پژوهش در نشخوارکنندگان 4(4)، 132-119.
علیزاده حمزه علی؛ لیاقت عبدالمجید؛ عباسی فریبرز (1388) بررسی اثر کود آبیاری جویچه‌ای بر کارایی مصرف کود و آب، عملکرد و اجزای عملکرد ذرت دانه‌ای. نشریه آب و خاک (علوم و صنایع کشاورزی)۲۳ (۴)، ۱۴۷-۱۳۷.
فخرآوری تهمینه (1390) تأثیر تنش شوری بر بیان برخی ژن‌های ناقل (TaNHX1, TaHKT1, TaSOS1) دخیل در ایجاد تحمل به شوری طی دوره رشد رویشی گندم نان. پایان نامه کارشناسی ارشد، دانشگاه تحصیلات تکمیلی کرمان، 103-82.
محمدآبادی محمدرضا؛ کرد محبوبه؛ نظری محمود (1397) مطالعه بیان ژن لپتین در بافت‌های مختلف گوسفند کرمانی با استفاده از Real Time PCR. مجله بیوتکنولوژی کشاورزی 10(3)، 122-111.
هادی زاده مرتضی؛ محمدآبادی محمدرضا؛ نیازی علی و همکاران (1392) استفاده از ابزارهای بیوانفورماتیکی در مطالعه اگزون شماره ۲ ژن GDF۹ در بزهای تالی و بیتال. ژنتیک نوین 8(3)، 288-283.
هادی زاده مرتضی؛ نیازی علی؛ محمدآبادی محمدرضا و همکاران (1393). بررسی بیوانفورماتیکی اگزون شماره دو ژن BMP15 در بزهای تالی و بیتال. ژنتیک نوین 9(1)، 120-117.
References
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019a) Effect of Roasted Soybean and Canola Seeds on Peroxisome Proliferator‐Activated Receptors Gamma (PPARG) Gene Expression and Cattle Milk Characteristics. Iran J Appl Anim Sci 9, 635-642.
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019b) Leptin gene expression in subcutaneous adipose tissue of Holstein dairy cattle using Real Time PCR. Agric Biotechnol J 11, 135-150 (In Persian).
Alizadeh HA, Liaghat A, Abbasi F (2009) Effect of furrow fertigation on fertilizer and water use efficiency, productivity and yield components of corn (Zea mays L.). J Water and Soil 23(4), 137-147 (In Persian).
Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Sci 285, 1256-1258.
Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62(15), 5561-5570.
Chen YH, Cao YY, Wang LJ et al. (2018) Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. Biol Plant 62, 222-230.
Davenport RJ, Munoz-Mayor AJhaD, Essah PA et al. (2007) The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell & Environment 30(4), 497-507.
Du HAI, Wang YONGIN, Xie YI et al. (2013) Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Research 20(5), 437–448.
Fakhravari T (2011) The effect of salinity stress on the expression of some transporter genes (TaNHX1, TaHKT1, TaSOS1) involved in salinity tolerance during the growing period of bread wheat. MSc Thesis, Kerman Graduate University. Pp. 82-103 (In Persian).
Gujjar RS, Akhtar M, Singh M (2014) Transcription factors in abiotic stress tolerance. Ind J Plant Physiol 19, 306-316.
Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014, 1-18.
Hadizadeh M, Mohammadabadi MR, Niazi A et al. (2013) Use of bioinformatics tools to study exon 2 of GDF9 gene in Tali and Beetal goats. Modern Genetics 8 (334), 283-288 (In Persian).
Hadizadeh M, Niazi A, Mohammadabadi MR et al. (2014) Bioinformatics analysis of the BMP15 exon 2 in Tali and Beetal goats. Modern Genetics 9 (1), 117-120 (In Persian).
Hoang X, Thu N, Thao N, Tran LS (2014) Transcription factors in abiotic stress responses: their potentials in crop improvement. In: Ahmad P, Wani M, Azooz M, Phan Tran LS (eds), Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. Pp. 337-366.
Jafari Darehdor AH, Mohammadabadi MR, Esmailizadeh AK, Riahi Madvar A (2016) Investigating expression of CIB4 gene in different tissues of Kermani Sheep using Real Time qPCR. J Rumin Res 4, 119-132 (In Persian).
James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, NAX1 and NAX2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8), 2939-2947.
Jiang Z, Song G, Shan X et al. (2018) Association analysis and identification of ZmHKT1; 5 variation with salt-stress tolerance. Front Plant Sci 9, 1485.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4), 402-408.
Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2), 139-158.
Masooleh AK, Ahmadikhah A, Saidi A (2018) Green synthesis of stable silver nanoparticles by the main reduction component of green tea (Camellia sinensis L.). IET Nanobiotechnol 13(2), 183-188.
Mass EV (1986) Crop tolerance to saline soil and water. Proe. US Pak Biosaline Res. Workshop, Karachi, Pakistan, pp. 205-219.
Mohammadabadi MR, Kord M, Nazari M (2018) Studying expression of leptin gene in different tissues of Kermani Sheep using Real Time PCR. Agric Biotechnol J 10, 111-122 (in Persian).
Mohammadabadi MR, Jafari AHD, Bordbar F (2017) Molecular analysis of CIB4 gene and protein in Kermani sheep. Brazil J Med Biol Res 50, e6177.
Mohammadabadi MR, Tohidi nejad F (2017) Characteristics determination of Rheb gene and protein in Raini Cashmere goat. Iran J Appl Anim Sci 7, 289-295.
Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2), 239-250.
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59, 651-681.
Rashid M, Ejaz S, Shah KH (2020) Regulatory role of transcription factors in abiotic stress responses in plants. In: Hasanuzzaman M (eds), Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore.
Razavi K, Mohsenzadeh S, Malboobi MA (2005) Molecular aspects of osmotic stresses. Dubai: International symposium on prospect of saline agriculture in the GCC countries.
Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Apl 22(1), 1-10.
Rus A, Lee BH, Muñoz-Mayor A et al. (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136(1), 2500-2511.
Sadat Noori SA, Ferdosizadeh L, Izadi-Darbandi A et al. (2011) Effects of salinity and laser radiation on proline accumulation in seeds of spring wheat. J Plant Physiol Breeding 1(2), 11-20.
Tang Y, Bao X, Zhi Y et al. (2019) Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci 10, 168.
Tohidi Nezhad F, Mohammadabadi MR, Esmailizadeh AK, Najmi Noori A (2015) Comparison of different levels of Rheb gene expression in different tissues of Raini Cashmir goat. Agric Biotechnol J 6, 37-49 (In Persian).
Wang L, Liu Y, Li D et al. (2019) Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC Plant Biol 357, 1336.
White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88(6), 967-988.
Yokoi S, Bressan RA, Hasegawa PM (2002) Salt stress tolerance of plants. JIRCAS Working Report 23(1), 25-33.
Yoon Y, Deok HS, Shin H, Kim HJ, Kim CM, Jang G (2020) The role of stress responsive transcription factors in modulating abiotic stress tolerance in plants. Agron 10, 788.
Zhang GH, Su Q, An LJ, Wu S (2007) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46(2), 117-126.
Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2), 66-71.