Isolation and molecular identification of melon (Cucumis melo) rhizosphere inhabitant Actinomycetes with plant growth promoting activity under biotic stress caused by Macrophomina phaseolina

Document Type : Research Paper

Authors

1 Graduate, Shahid Bahonar University of Kerman

2 Professor, Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.

3 Head of Plant Physiology Group, Research & Technology Institute of Plant Production, Shahid Bahonar University of Kerman

4 Microbiological Biotechnology Dep. ABRII

Abstract

Objective
Melon charcoal rot is one of the most important diseases that significantly reduces the yield of melon (Cucumis melo L.). The main objectives of this study were: isolation of actinomycetes from the rhizospheric soil of different melon cultivation regions located in the Kerman and Sistan and Baluchestan provinces of Iran; investigating the antagonistic effects of actinomycetes against melon black stem or charcoal rot disease; evaluation of siderophore production by isolates in vitro; identification of potential isolate by PCR, and investigating their biocontrol efficacy against Macrophomina phaseolina in melon under greenhouse condition.
Materials and methods
Eighty actinomycete isolates were isolated from the soil of selected different melon cultivation areas and their antifungal activity against Macrophomina phaseolina was investigated. Potential isolates were evaluated for biological activities. Moreover, the efficacy of selected actinobacteria in order to biocontrol charcoal rot disease was investigated under greenhouse condition.
Results
Three actinomycete isolates (R1.6, R5.52 and R5.56) were revealed the highest inhibition zone size against Macrophomina phaseolina and selected for further investigations. All three isolates were able to colonize melon roots, produce extracellular enzymes and control disease in the greenhouse. The actinomycete isolate R5.56 was identified by sequence analysis of small ribosomal RNA subunit (16S rRNA) and based on the results this isolate had the highest similarity (98%) with Streptomyces species.
Conclusions
Biological control of plant pathogens, unlike the application of chemical pesticides, does not work quickly, but in successful cases, has more long-lasting effects compare to chemical pesticides. Biological control should be mentioned as a key component of the integrated pests and plant diseases management system approaches to minimize the environmental side effects and risks as the consequences of over usage of chemicals. This study is a prelude to further studies such as the use of these antagonists against Macrophomina phaseolina in the field, which must be done for at least three years.

Keywords


اعتباریان حسن رضا (1381) بیماریهای سبزی و صیفی و روشهای مبارزه با آنهـا. انتـشارات دانـشگاه تهـران. ص600.
بهادری جهرمی م (1389) بررسی امکان مبارزه بیولوژیک با  Macrophomina phaseolinaعامل بیماری ساق سیاه خربزه توسط گونه­های تریکودرما. پایان­نامه جهت دریافت درجه کارشناسی ارشد در رشته بیماری­شناسی گیاهی. دانشگاه شهید چمران اهواز.
حاتمی نرگس، بازگیر عیدی، صداقتی ابراهیم، درویش نیا مصطفی (1399) مطالعه ی مورفولوژیکی و فیلوژنتیکی قارچهای میکوریز آربوسکولار همزیست با ریشه ی برخی گیاهان دارویی استان کرمان، مجله بیوتکنولوژی کشاورزی، 12، 23-44.
خیری عباس، اعتباریان حسن رضا، روستایی علی، خداکرمیان غلام، امینیان حشمت‌اله (1388) بررسی امکان کنترل بیولوژیک بیماری ساق سیاه خربزه با استفاده از جدایه Pseudomonas fluorescens، مجله کشاورزی، 11 (1)، 35-46.
قایدی سمانه، عبداللهی محمد و فریبا قادری (1391) شناسایی عامل بیماری زوال گیاهچه های لوبیا در استان کهگیلویه و بویراحمد و واکنش ارقام مختلف لوبیا (Phaseolus vulgaris) به آن. پژوهش‌های حبوبات ایران، 3، 119-126.
References
Abbasi S, Sadeghi A, Safaie N (2020) Biocontrol of Cucumber Damping-off by Streptomyces Strains Producing Siderophore and Cellulase under Extreme Condition. Biol J Microorganism 9, 1-13.
Abbasi S, Spor A, Sadeghi A, Safaie N (2021). Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Sci Rep 11, 9317.
Aksoy SC, Uzel A, Bedir E (2016) Cytosine-type nucleosides from marine-derived Streptomyces rochei 06CM016. J Antibiot 69, 51-56.
Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12, 39-45.
Bach E, Seger GDS, Fernandes GC et al. (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99,141–149.
Bahadori Jahromi M (2010) Evaluation of the possible biocontrol of Melon charcoal rot caused by Macrophomina phaseolina by Trichoderma species. Thesis for fulfilment of MSc degree in Plant Pathology. Shahid Chamran University of Ahvaz (In Persian).
Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-Mediated Plant Growth- Stimulation. Soil Biol Biochem 19, 451- 457.
Blanco MM, Gibello A, Vela AI et al. (2002) PCR detection and PFGE DNA macro restriction analyses of clinical isolates of Pseudomonas anguilliseptica from winter disease outbreaks in sea bream Sparus aurata. Dis Aquat Organ. 50, 19-27
Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl Environ Microbiol70, 1051-1058.‏
El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing Streptomycete actinomycetes. Plant Soil 308,161-174.
Etebarian HR (2002) Diseases of vegetables and management, University of Tehran. 600 pp (In Persian).
Ghayedi S, Abdollahi M, Ghaderi F (2012) Identification of Charcoal rot disease of bean seedlings in Kohgiluyeh and Boyerahmad province and evaluation of partial resistance of common bean (Phaseolus vulgaris) cultivars. Iran J Pulse Res 3, 119-126 (In Persian).
Gopalakrishnan S, Vadlamudi S, Bandikinda P, et al. (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth promotion traits in rice. Microbiol Res 169, 40-48.
Hatami N, Bazgir E, Sedaghati E, Darvishnia M (2020) Isolation and study of morphology and phylogeny of arbuscular mycorrhizal fungi coexisting with the roots of some medicinal plants in Kerman province. Agric Biotechnol J 12, 23-44 (In Persian).
Kalantar Zadeh M, Shahidi Bonjar GH, Rashid Farrokhi P et al (2005). Biological control of Streptomyces scabies and S. acidiscabies, the major causal agents of potato common scab in Iran by use of Streptomyces. 4th Iranian National Biotechnology Congress, Mahan, Iran.
Karimi E, Sadeghi A (2015). Study on optimum growth condition and designing formulation for increasing shelf life of Streptomyces rimosus strain C-2012 as biocontrol agent. Biol J Microorganisms 4, 109-122.

Kheiri A, Etebarian HR, Roustae A et al.  (2009) Study of possibility of biological control of charcoal rot on melon (Macrophomina phaseolina) by Pseudomonas fluorescens isolates. J Agric 11, 35-46 (In Persian).

Kieser T, Mervyn JB, Buttner MJ et al. (2000) Practical Streptomyces Genetics. John Innes Foundation, John Innes Centre. Norwich Research Park, Colney, Norwich, England.
Kim H, Lee SC, and Hwang BK (2006) Streptomyces cheonanensis sp. Nov., a novel Streptomycete with antifungal activity. Int J Syst Evol Microbiol 56, 471-475.
Konishi M, Ohkuma H, Matsumoto K et al. (1991). Dynemicins, new antibiotics with the 1, 5-diyn-3-ene and anthraquinone subunit. I. Production, isolation and physico-chemical properties. J Antibiot 44, 1300-1305.
Kuster E, Williams ST (1964). Selection of media for isolation of Streptomycetes. Nature 202, 928-929.‏
Luo XX, Kai L, Wang Y, et al. (2017). Streptomyces luteus sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 67, 543-547.
McCreight JD, Staub JE, Koppar NM et al. (1993) Indo-US Cucumis germplasm expedition. HortScience 28, 492.
Rashad FM, Abd El-Nasser NH, Dawoud IE et al. (2015) Isolation and Characterization of Antibiotic / Antitumor Producing Streptomyces. Res J Pharm Biol Chem Sci6, 1917-1929.
Sadeghi A, Soltani BM, Jouzani GS et al. (2014) Taxonomic study of a salt tolerant Streptomyces sp. strain C-2012 and the effect of salt and ectoine on lon expression level. Microbiol Res, 169: 232-238.
Sadeghian M, Shahidi Bonjar GH, Sharifi-sirchi GhR (2016) Post harvest biological control of apple bitter rot by soil-borne Actinomycetes and molecular identification of the active antagonist. Postharvest Biol Technol 112, 46-54.
Shafii Baftii S, Shahidi Bonjar GH, Aghighi S et al. (2005). Biological control of Fusarium oxysporum f. sp. melonis, the causal agent of root rot disease of greenhouse cucurbits in Kerman Province of Iran. Am J Biochem Biotechnol 1, 22-26.‏
Shahriari D, Torabi M (2013) Response of Iranian local and improved genotypes of melon and musk melon to charcoal rot disease caused by Macrophomina phaseolina. Agricultural and Natural Resources Research Center of Tehran, Varamin, Iran, 165-176.
Soltani Nejad M, Shahidi Bonjar GH, Khatami M et al. (2016) In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnol 3, 236-240.
Soltanzadeh M, Soltani Nejad M, Shahidi Bonjar GH (2016) Application of Soil‐borne Actinomycetes for Biological Control against Fusarium Wilt of Chickpea (Cicer arietinum) caused by Fusarium solani fsp pisi. J Phytopathol 164, 967-978.
Song J, Lee SC, Kang JW et al. (2004) Phylogenetic analysis of Streptomyces spp. isolated from potato scab lesions in Korea on the basis of 16S rRNA gene and 16S–23S rDNA internally transcribed spacer sequences. Int J Syst Evol Microbiol, 54: 203-209.
Tamura K, Peterson D, Peterson N et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739.
Toumatia O, Compant S, Yekkour A, et al. (2016). Biocontrol and plant growth promoting properties of Streptomyces mutabilis strain IA1 isolated from a Saharan soil on wheat seedlings and visualization of its niches of colonization. S Afr J Bot 105, 234-239.
Türkkan M, Benli Hİ, Yılmaz Ö et al. (2020). First report of charcoal rot caused by Macrophomina p(Torabi, 2019 #65;Torabi, 2019 #65)haseolina on kiwifruit in Turkey. J Plant Pathol 102, 535.