Bioinformatics study of the role of micro RNAs bta-mir-146a, bta-mir-223, bta-mir 21-5p, bta-mir-181 and bta-mir-16a in the cellular signaling pathways of mastitis in dairy cows

Document Type : Research Paper

Authors

1 Guilan University. Rasht.

2 Guilan University

3 Illam University

Abstract

Objective
It is reasonable to investigate the signaling pathways in diseases such as mastitis in dairy cattle, which are more likely to be affected by epigenetics.
 
Materials and methods
In this research, 5 microscopic RNA molecules with the accession numbers bta-mir-223, bta-mir 21-5p, bta-mir-181, bta-mir-146a and bta-mir-16a in the sources were identified and extracted from the literatures. Using mirtarbase and targetcan databases, respectively, the confirmed and predicted target genes were extracted for each of the top microRNAs, respectively. Subsequently, the expression of the predicted and confirmed target genes for each of the top microRNAs in the mammary gland tissue was investigated at the NCBI database. In addition, using the DAVID software, cellular signaling pathways were identified in KEGG.
 
Results
Based on the results, bta-mir-146a microRNA through effects on of 7 proteins, and microRNA bta-mir-223 through effects on 11 proteins and micro RNA bta-mir21-5p through effects on 9 proteins, involved in various cellular signaling pathways, sought to be involved in mastitis in dairy cattle. The results also showed that two bata-mir-181 and bta-mir-16a played an important role in crucial pathways such as the GnRH signaling pathway, Estrogen signaling pathway, Progesterone-mediated oocyte maturation Oxytocin Signaling Pathway and MAPK Signaling Pathway.
 
Conclusions
This study shows that the microRNAs can be used as molecular markers to dissect molecular etiology of mastitis in dairy cattle.
 
 
Biranvad Z, Ghaderi-Zefrehei M, Mirhoseini SZ, Hosseini Moghaddam SH, Fazeli A (2019) Bioinformatics study of the role of micro RNAs bta-mir-146a, bta-mir-223, bta-mir 21-5p, bta-mir-181 and bta-mir-16a in the cellular signaling pathways of mastitis in dairy cows. Agricultural Biotechnology Journal 11 (1), 1-24. 
 
Agricultural Biotechnology Journal 11 (1), 1-24.
DOI: 10.22103/jab.2019.12015.1046
Received:  August 25, 2018; Accepted: February 21, 2019
© Faculty of Agriculture, Shahid Bahonar University of Kerman-Iranian Biotechnology Society

Keywords


منابع
خراتی­کوپایی حامد، محمدآبادی محمدرضا و همکاران (1390) تغییرات ژنتیکی ژن DGAT1 و ارتباط آن با تولید شیر در جمعیت گاو هولشتاین ایران. مجله علمی پژوهشی ایران 3(2)، 192-185 .
خراتی­کوپایی حامد، محمدآبادی محمدرضا، ترنگ علی­رضا و همکاران (1391) بررسی ارتباط بین تغییرات آلل ژن DGAT1 با ورم پستان در گاوهای هولشتاین ایران. مجله ژنتیک نوین 7(1)، 101-104.
هادی­زاده مرتضی، محمدآبادی محمدرضا، نیازی علی و همکاران (1392) استفاده از ابزارهای بیوانفورماتیک برای مطالعه اگزون 2 ژن GDF9 در بز های تالی و بی­تال. مجله ژنتیک نوین 8) 334(، 288-283.
هادی­زاده مرتضی، نیازی علی، محمدآبادی محمدرضا و همکاران (1392) تجزیه و تحلیل بیوانفورماتیک از اگزون 2 ژنBMP15 در بزهای تالی و بی­تال. ژنتیک نوین 9(1)،120-117.
 
References
Baghizadeh A, Bahaaddini M, Mohamadabadi MR, Askari N (2009) Allelic variations in exon 2 of caprine MHC class II DRB3 gene in Raeini Cashmere Goat. American-Eurasian J Agric Environ Sci 6, 454-459.
Buitenhuis B, Røntved CM, Edwards SM et al. (2011) In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis. BMC Genomics 12, 130-142.
De Schepper S, De Ketelaere A, Bannerman DD et al. (2008) The toll-like receptor-4 (TLR-4) pathway and its possible role in the pathogenesis of Escherichia coli mastitis in dairy cattle. Vet Res 39, 1-23.
Den Breems NY, Nguyen LK, Kulasiri D (2014) Integrated signaling pathway and gene expression regulatory model to dissect dynamics of Escherichia coli challenged mammary epithelial cells. Bio Systems 126, 27-40.
Duman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35, 47–56.
Hadizadeh M, Mohammadabadi MR, Niazi A et al. (2013). Use of bioinformatics tools to study exon 2 of GDF9 gene in Tali and Beetal goats. Modern Genet J 8, 283-288 (In Persian).
Hadizadeh M, Niazi A, Mohammad Abadi MR et al. (2014). Bioinformatics analysis of the BMP15 exon 2 in Tali and Beetal goats. Modern Genet J 9, 117-120 (In Persian).
Hein G, Panzani C, Rodríguez F et al. (2015) Impaired insulin signaling pathway in ovarian follicles of cows with cystic ovarian disease. Anim Reprod Sci 156, 64-74.
Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. NatureProtocols 4, 44-57.
Gigli I, Maizon DO (2013) MicroRNAs and the mammary gland: A new understanding of gene expression. Genet Mol Biol 36, 465-474.
Jin W, Ibeagha-Awemu EM, Liang G et al. (2014) Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC genomics 15, 181-192.
Kharrati Koopaei H, Mohammad Abadi MR, Ansari Mahyari S et al. (2012a) Effect of DGAT1 variants on milk composition traits in Iranian Holstein cattle population. Anim Sci Papers Report 30, 231-240.
Kharrati Koopaei H, Mohammadabadi MR, Ansari Mehyari S et al. (2011) Genetic Variation of DGAT1 gene and its association with milk production in Iranian Holstein cattle breed population. Iran J Anim Sci Res 3, 185-192 (In Persian).
Kharrati koopaei H, Mohammadabadi MR, Tarang A et al. (2012b) Study of the association between the allelic variations in DGAT1 gene with mastitis in Iranian Holstein cattle. Modern Genet J 7, 101-104 (In Persian).
Lakhter AJ, Pratt RE, Moore RE et al. (2018) Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetilogia 61, 1124-1134.
Lawless N, Reinhardt TA, Bryan K et al. (2014) MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model. G3: Gene Genome Genet 4, 957-971.
Li L, Huang J, Zhang X et al. (2012) One SNP in the 3′-UTR of HMGB1 gene affects the binding of target bta-miR-223 and is involved in mastitis in dairy cattle. Immunogenet 64, 817-824.
Li R, Zhang CL, Liao XX et al. (2015) Transcriptome MicroRNA Profiling of Bovine Mammary Glands Infected with Staphylococcus aureus. International J  Mol Sci 16, 4997-5013.
Liu Y, Zhang J, Zhou YH et al. (2015) IL-6/STAT3 signaling pathway is activated in plasma cell mastitis. International J Clinic Experiment Pathol 8, 12541–12548.
Martin G S. (2003) Cell signaling and cancer. Cancer cell 4, 167-174.
Maurin T, Cazalla D, Yang JS et al. (2012) RNase III-independent microRNA biogenesis in mammalian cells. RNA 18, 2166-2173.
Mohammadabadi MR, Shaikhaev GO, Sulimova GE et al (2004) Detection of bovine leukemia virus proviral DNA in Yaroslavsl, Mongolian and black pied cattle by PCR. Cell Mol Biol Letter 9, 766-768.
Mohammadabadi MR, Soflaei M, Mostafavi H, Honarmand M (2011) Using PCR for early diagnosis of bovine leukemia virus infection in some native cattle. Genet Mol Res 10, 2658-2663.
Mohammadi A, Nassiry MR, Mosafer J et al. (2009) Distribution of BoLA-DRB3 allelic frequencies and identification of a new allele in the Iranian cattle breed Sistani (Bos indicus). Russ J Genet 45, 198-202.
Naeem A, Zhong K, Moisá S et al. (2012) Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. J Dairy Sci 95, 6397-6408.
Ruzina MN, Shtyfurko TA, Mohammadabadi MR et al. (2010) Polymorphism of the BoLA-DRB3 gene in the Mongolian, Kalmyk, and Yakut cattle breeds. Russ J Genet 46, 456-463.
Rosa RD, Capelli-Peixoto J, Mesquita RD et al. (2016) Exploring the immune signaling pathway-related genes of the cattle tick Rhipicephalus microplus: from molecular characterization to transcriptional profile upon microbial challenge. Develop Comparative Immunol 59, 1-14.
Santosh B, Varshney A, Yadava PK (2015) Noncoding RNAs: biological functions and applications. Cell Biochem Function 33, 14-22.
Sengar GS, Deb R, Singh U et al. (2018) Identification of differentially expressed microRNAs in Sahiwal (Bos indicus) breed of cattle during thermal stress. Cell Stress Chaperones 23,1019-1032.
Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg, A (2010) MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16, 1087-1095.
Wang XP, Luoreng ZM, Zan LS et al. (2017) Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene. J Dairy Sci 100, 7648-7658.
Wu J, Li L, Sun Y et al. (2015) Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis. PloS One 10, 1-16.
Yang G, Yang X (2010) Smad4-mediated TGF-β signaling in tumorigenesis. International J Biol Sci 6, 1-8.