The Study of Genetic Diversity in Khazak Native Chicken Using Whole Genome Sequencing

Document Type : Research Paper

Authors

1 Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran.

2 Department of Animal Science, Faculty of Agriculture, College of Agriculture, Shahid Bahonar University of Kerman

Abstract

Objective Indigenous animals are considered as the national treasures and strategic sources of each country. It is essential to preserve and reproduce them. Since no artificial selection has been employed in Iranian native breeds, there is considerable diversity in their genome. Therefore, having detailed information on the animals’ genome can be important for designing breeding plans in the future. The aim of this study was to identify the functional effects of single nucleotide polymorphisms and investigate the genetic diversity in the Khazak chicken ecotype using sequence information of the whole genome. Materials and methods In this study, 17 Khazak chicken samples were sequenced using Next Generation Sequencing (NGS) technique. After preprocessing short sequences using FastQC, Trimmomatic, BWA, Picard software and the GATK program, single nucleotide polymorphisms were identified in GATK program using the UnifiedGenotyper tool. Samtools software was applied to calculate short reads coverage and the percentage of read alignment with the reference genome. The filtering steps of SNPs were performed using Plink software. The genetic diversity within the target population was calculated using the VCFtools program. Results The mean coverage depth for 17 chickens was 6.45. After preprocessing the short sequences, were identified 15,981,176 and 10,552,735 SNPs before and after the quality control, respectively. Functional annotation of the single nucleotide polymorphisms indicated that most of the SNPs are located in the intron and intergenic regions and only 2.8% of them belong to the exon region. The rate of Transition to transversion mutations (Ti / Tv) was 2.43 and the ratio of heterozygous to homozygous SNPs was 3.3 in the Khazak birds, on average. Conclusions The higher number of heterozygous SNPs indicates that there is a high genetic diversity in the Khazak ecotype. Like other Iranian native chickens, the ecotype has the genetic diversity that can be considered a native laying ecotype in the breeding programs.

Keywords


اسکندری طاهره، اسمعیلی‌زاده کشکوئیه علی، اسدی فوزی مسعود (1397) ﺷﻨﺎﺳﺎﯾﯽ ﻧﺸﺎﻧﮕﺮﻫﺎی ﺗﮏ ﻧﻮﮐﻠﺌﻮﺗﯿﺪی در ﻣﺮغ ﺑﻮﻣﯽ ﻓﺎرس ﺑﺎ اﺳﺘﻔﺎده از روش ﺗﻮاﻟﯽ‌ﯾﺎﺑﯽ ﮐﻞ ژﻧﻮم. مجله بیو تکنولوژی کشاورزی 10 (1)، 151-139.
اکبری رسول، اسمعیلی‌زاده کشکوئیه علی، امیری قنات سامان زینب، آیت اللهی مهجردی احمد (1399) شناسایی تنوع ژنوم در مرغ مرندی با استفاده از روش توالی‌یابی کل ژنوم. مجله بیو تکنولوژی کشاورزی 12 (1)، 161-176.
امیری قنات سامان زینب، اسمعیلی‌زاده کشکوئیه علی، اسدی فوزی مسعود (1395) بررسی تنوع ساختاری ژنگان سگ و گرگ بومی ایران با روش توالی‌یابی کل ژنوم. مجله علوم دامی ایران 47 (2)، 271-277.
توکلیان ﺟﻮاد،‌ (1378) ﻧﮕﺮﺷﻲ ﺑﺮ ذﺧﺎﻳﺮ ژﻧﺘﻴﻜﻲ دام و ﻃﻴﻮر بومی ایران. موسسه تحقیقات علوم دامی ایران ، ایران. 169-201
دلجوی سرایان ج، 1390 .تعیین صفات کیفی تخم مرغ در مرغ بومی خزک. پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه زابل. 28-42.
محمدی فر آمنه، فقیه ایمانی سید علی، محمد آبادی محمد رضا، سفلایی محمد (1392) تاثیر ژن TGFB3 بر ارزش‌‌‌های فنوتیپی و ارثی صفات وزن بدن در مرغ بومی فارس. مجله بیوتکنولوژی کشاورزی 5 (4)، 125-136.
نیکبختی مهدی، میرزایی حمیدرضا، افشاریان شاندیز مجید و همکاران (1388) بررسی تنوع ژنتیکی مرغان بومی استان خراسان رضوی با استفاده نشانگرهای ریزماهواره. پژوهش‌های علوم دامی ایران 1(2)، 19-25.
References
Abebe AS, Mikko S, Johansson AM (2015) Genetic diversity of five local Swedish chicken breeds detected by microsatellite markers. PLoS One 4, 1-13.
Akbary R, Esmaeelizadeh A, Amiri Ghanatsaman Z, Ayetollahi Mehrjerdi A (2020) Identification       of genome diversity in marandi chicken using whole genome sequencing method. J Agric            Biotech 12,161-176 (In Persian).
Amiri Ghanatsaman Z, Esmailizadeh Koshkoiyeh A, Asadi Fozi M (2016) Study of structural diversity of genome Iranian native dog and wolf with the method whole genome sequencing. Iran J Anim Sci 47, 271-277 (In Persian).
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom.
Aslam ML, Bastiaansen JW, Elferink MG et al. (2012) Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC genomics 13, 1-14.
Bainbridge MN, Wang M, Wu Y et al. (2011) Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities. Genome Biol 12, 1-12.
Boettcher P, Tixier‐Boichard M, Toro M et al. (2010) Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Anim Genetics 41, 64-77.
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
Boschiero C, Moreira GCM, Gheyas AA et al. (2018) Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines. BMC Genomics 19, 83.
Cingolani P, Platts A, Wang LL et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80-92.
Danecek P, Auton A, Abecasis G et al. (2011) The variant call format and VCFtools. Bioinformatics 27, 2156-2158.
Deljoy Sarayan J, (2011). Determination of Egg Qualitative Traits in Khazak Native Chicken. Master thesis, Zabol University. pp. 28-42 (In Persion).
DePristo MA, Banks E, Poplin R et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics 43, 491-498.
Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418, 700-707.
Ebbert MT, Wadsworth ME, Staley LA et al. (2016) Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches. BMC Bioinformatics 17, 239.Edwards NC, Hing ZA, Perry A et al. (2012) Characterization of coding synonymous and non-synonymous variants in ADAMTS13 using ex vivo and in silico approaches. PLoS One 7, e38864.
Engelsma KA (2012) Use of SNP markers to conserve genome-wide genetic diversity in livestock. PhD thesis, Wageningen University. pp. 12-20.
Eskandari T, Esmailizadeh AK, Mohammadabadi MR, Sohrabi S (2018) Identification of single nucleotide polymorphisms in Fars native chicken using whole genome sequencing data. Agric Biotechnol J 10, 139-151 (In Persian).
Gheyas AA, Boschiero C, Eory L et al. (2015a) Functional classification of 15 million SNPs detected from diverse chicken populations. DNA Res 22, 205-217.
Gheyas AA, Boschiero C, Eory L et al. (2015b) Functional classification of 15 million SNPs detected from diverse chicken populations. DNA Res 22, 205-217.
Guo Y, Li J, Li C-I et al. (2012) The effect of strand bias in Illumina short-read sequencing data. BMC genomics 13, 1-11.
Hoffmann I (2005) Research and investment in poultry genetic resources–challenges and options for sustainable use. Worlds Poult Sci J 61, 57-70.
Lawal RA, Al-Atiyat RM, Aljumaah RS et al. (2018) Whole-genome resequencing of red junglefowl and indigenous village chicken reveal new insights on the genome dynamics of the species. Front Genet 9, 264.
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754-1760.
Li H, Handsaker B, Wysoker A et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18, 1851-1858.
Linck E, Battey C (2019) Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol Ecol Resour 19, 639-647.
Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3, 91-99.
McKenna A, Hanna M, Banks E et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303.
Moazeni S, Mohammadabadi MR, Sadeghi M et al. (2016a) Association between UCP Gene Polymorphisms and Growth, Brreeding Value of Growth and Reproductive Traits in Mazandaran Indigenous Chicken. Open J. Anim. Sci 6, 1-8.
Moazeni SM, Mohammadabadi MR, Sadeghi M et al. (2016b) Association of the melanocortin-3(MC3R) receptor gene with growth and reproductive traits in Mazandaran indigenous chicken. J. Livest. Sci. Technol 4, 51-56.
Mohammadifar A, Faghih Imani SA, Mohammadabadi MR, Soflaei M (2014) The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agric. Biotechnol J 5, 125-136 (In Persian).
Mohammadifar A, Mohammadabadi MR (2018) Melanocortin-3 receptor (mc3r) gene association with growth and egg production traits in Fars indigenous chicken. Malays Appl Biol 47, 85–90.
Mohammadifar A, Mohammadabadi MR )2017( The Effect of Uncoupling Protein Polymorphisms on Growth, Breeding Value of Growth and Reproductive Traits in the Fars Indigenous Chicken. Iran J Appl Anim Sci 7, 679-685.
Nikbakhti M, Mirzaee HR, Afsharian Shandiz M, et al. (2009) Analyses of genetic variation in Khorasan indigenous chicken breed by using of microsatellite markers. Iran J Anim Sci Res 1 (2), 19-25 (In Persian).
Oh D, Son B, Mun S et al. (2016) Whole genome re-sequencing of three domesticated chicken breeds. Zool Sci 33, 73-77.
Osman SA-M, Yonezawa T, Nishibori M (2016) Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region. Poult Sci 95, 1248-1256.
Padhi MK (2016) Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016.
Peters J, Lebrasseur O, Best J et al. (2015) Questioning new answers regarding Holocene chicken domestication in China. Proc Natl Acad Sci 112, E2415-E2415.
Rosenberg MS, Subramanian S, Kumar S (2003) Patterns of transitional mutation biases within and among mammalian genomes. Mol Biol Evol 20, 988-993.
Sawai H, Kim HL, Kuno K et al. (2010) The origin and genetic variation of domestic chickens with special reference to junglefowls Gallus g. gallus and G. varius. PLoS One 5, e10639.
Sims D, Sudbery I, Ilott NE et al. (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet 15, 121.
Strillacci M, Cozzi M, Gorla E et al. (2017) Genomic and genetic variability of six chicken populations using single nucleotide polymorphism and copy number variants as markers. Anim 11, 737-745.
Tavakolian J ( 2000) An introduction to genetic resorces of native farm animals in Iran. Animal Science Research Center of Iran, Iran. pp. 169-201 (In Persion).
Tixier-Boichard M, Bed’hom B, Rognon X (2011) Chicken domestication: from archeology to genomics. C. R. Biol 334, 197-204.
Tsai C-J, Sauna ZE, Kimchi-Sarfaty C et al. (2008) Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J. Mol. Biol 383, 281-291.
Venter JC, Smith HO, Adams MD (2015) The sequence of the human genome. Clin. Chem 61, 1207-1208.