Rice genetic engineering using transformation of Deeper Rooting1 and Phosphorus-Starvation Tolerance1 genes

Authors

1 M.Sc, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran

2 PhD Student, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran

3 B.Sc, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran

4 Postdoctoral Researcher, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran.

5 Assistant Professor, Rice Research Institute of Iran (RRII), Agricultural Research Education and Extension Organization (AREEO) Rasht, Iran

6 Assistant Professor, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.

7 Professor, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran

8 *Corresponding author. Professor, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran

9 Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran

Abstract

Objective
Root structure modification is associated with the efficient water uptake and the nutrient utilization. It also provides structural support for the anchoring in soil. Genetic engineering for the improvement of plant root structure may help to maintain higher yields under drought conditions. The aim of this study was to modify the root structure of rice in order to improve drought tolerance and the efficiency of nutrient uptake. For this purpose, simultaneous transformation of Deeper Rooting1 or OsDRO1 gene, which is involved in the regulation of growth angle of the root in order to adapt to drought conditions, and Phosphorus-Starvation Tolerance1 or OsPSTOL1 gene, which is effective in increasing phosphorus uptake and improving root structure, were considered for rice root structure modification.
 
Materials and methods
The OsDRO1 and OsPSTOL1 genes derived from the wild rice cultivars were cloned together in a single construct under the control of the root specific and the ubiquitin promoters, respectively. The resulting construct, pUhrDroPstol is transformed into the Agrobacterium tumefactions strain EHA105 and used for the gene transformation into Hashemi cultivar. Putative transgenic plants, survived on 50 mg/L Hygromycin during tissue culture steps, are transplanted into the Yoshida solution and then into the pots until they set seeds. Construct specific and gene specific PCR analysis are used to confirm the transgenic plants.
 
Results
In this study, 12 putative transgenic rice events were obtained, of which 10 showed the presence of both OsDRO1 and OsPSTOL1 genes in the PCR analysis. Transgenic plants show stronger root structure compared to the non-transgenic ones. Molecular analysis in the T1 and T2 generations determined the homozygous events.
 
Conclusions
In this study, two candidate genes affecting root structure, nutrient uptake and drought tolerance were transferred to the Hashemi rice using genetic engineering. So far, simultaneous transfer of these two candidate genes have not been reported. Transgenic plants present better root system compared to the control plants. The mentioned construct can be used for the transformation of other crops to improve their root structure, nutrient uptake and their drought tolerance. It is hoped that the production of the transgenic rice with modified root structure and efficient phosphorus uptake increases its drought tolerance and reduce water consumption in rice cultivation.

Keywords


چمنی محصص فاطمه، سلوکی محمود، قره یاضی بهزاد، فرشاد فاطمه، فهمیده لیلا، غفاری اکرم، محسن پور مطهره (1396) جداسازی و آنالیز عملکرد ژن افزایش جذب فسفر (PSTOL1) از گونه وحشی برنج. مجله علمی پژوهشی مهندسی ژنتیک و ایمنی زیستی. 6 (1) 1-10.
رئوفی البرز، توحیدفر مسعود، سلوکی، محمود، محسن پور مطهره (1390) جداسازی و کلون کردن دو ژن از خانواده PR1 و ساخت پلاسمیدهای سه‌گانه حاوی سه گروه مختلف از ژن‌های PR ، به منظور تولید گیاهان تراریخته مقاوم به بیماری‌های قارچی. مجله بیوتکنولوژی کشاورزی. 3 (2) 27-46.
زندی میلاد، حسینی رامین، محسن پور مطهره، حسینی سالکده قاسم، قره یاضی بهزاد (1398) انتقال ژن‌های OsEXPA8، OsNAC5 وDRO1 به برنج به منظور تغییر ساختار ریشه و تحمل به خشکی. مجله علمی پژوهشی مهندسی ژنتیک و ایمنی زیستی. 8 (1) 77-89.
محسن پور مطهره، بابائیان جلودار نادعلی، توحیدفر مسعود، حبشی علی اکبر (1387) طراحی و ساخت چهار حامل پلاسمیدی نوترکیب مناسب برای انتقال ژن های کیتیناز، گلوکاناز و Bt به گیاهان. مجله علمی پژوهشی علوم کشاورزی و منابع طبیعی. 15 (4) 69-80.
محمدی زاده نگین، توحیدفر مسعود، محسن پور مطهره (1389) تراریزش گیاه گندم بواسطه اگروباکتریوم به منظور انتقال ژن‌های کیتیناز و گلوکاناز. مجله بیوتکنولوژی کشاورزی. 2 (1) 81-98.
 
References
An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81 (1), 301–305.
Arai-Sanoh Y, Takai T, Yoshinaga S, et al. (2014) Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Sci Rep 4 (1), 1-6.
Araki H, Morita S, Tatsumi J, Iijima M (2002) Physiol-morphological analysis on axile root growth in upland rice. Plant Prod Sci 5 (4), 286-293.
Bennett J, Cohen MB, Katiyar SK, et al. (1997) Enhancing insect resistance in rice through biotechnology. Adv in Insect Control: The Role of Transgenic Plants 75–93.
Chamani Mohasses F, Solouki M, Ghareyazie B, et al. (2020) Correlation between gene expression levels under drought stress and synonymous codon usage in rice plant by in-silico study. PLoS One 15 (8), e0237334.
Chamani Mohasses F, Soluki M, Ghareyazie B, et al. (2017) Isolation and functional analysis of PSTOL1 from wild species of rice. Gene Eng Biosafety J 6 (1), 1-10 (In Persian).
Chin JH, Gamuyao R, Dalid C, et al. (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156 (3), 1202-1216.
Chin JH, Lu X, Haefele SM, et al. (2010) Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. Theor Appl Genet 120 (6), 1073-1086.
Dolatabadi B, Ranjbar G, Tohidfar M, Dehestani A (2014) Genetic transformation of Tomato with three pathogenesis-related protein genes for increased resistance to Fusarium oxysporum f. sp. lycopersici. J Plant Mol Breed 2 (1), 1–11.
Gamuyao R, Chin JH, Pariasca-tanaka J, et al. (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488 (7412), 535–539.
Ghareyazie B, Alinia F, Menguito CA, et al. (1997) Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene. Mol Breed 3 (5), 401–414.
Heuer S, Lu X, Chin JH, et al. (2009) Comparative sequence analyses of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure. Plant Biotechnol J 7 (5), 456–471.
Kondo M, Murty MVR, Aragones D V (2000) Characteristics of root growth and water uptake from soil in upland rice and maize under water stress. Soil Sci Plant Nutr 46 (3), 721–732.
Li L, Zhou Y, Cheng X, et al. (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci 100 (8), 4939–4944.
Miyasaka SC, Habte M (2007) Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Commun Soil Sci Plant Anal 32 (7-8), 1101–1147.
Mohammadizadeh N, Tohidfar M, Mohsenpour M (2010) Agrobacterium-Mediated Transformation of Wheat (Triticum Aestivum) Using Chitinase and Glucanase Genes. Agric Biotechnol J 2 (1), 81-98 (In Persian).
Mohkami A, Marashi H, Shahriary Ahmadi F, et al. (2015) Evaluation of Agrobacterium-mediated Transformation of Chlamydomonas reinhardtii using a Synthetic amorpha-4, 11-diene Synthase Gene. J Cell Mol Res 7 (1), 53–58.
Mohsenpour M, Babaeian Jeloudar NA, Tohidfar M, Habashi AA (2008) Design and construction of four recombinant plasmid vectors containing chitinase, glucanase and BT genes, suitable for plant transformation. J Agric Sci Natur Resour 15 (4), 69-80 (In Persian).
Mohsenpour M, Tohidfar M, Jelodar NB, Jouzani GS (2015) Designing a new marker-free and tissue-specific platform for molecular farming applications. J Plant Biochem Biotechnol 24 (4), 433-440.
Ozawa K (2012) A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). In: Transgenic Plants. Springer, pp 51–57.
Raufi A, Tohidfar M, Soluki M, Mohsenpour M (2012) Isolation and Cloning of Two Genes from PR1 Family and Construction of Treble Plasmids Containing 3 Groups of Genes for Producing Transformed Plants Resistant to Fungal Diseases. Agric Biotechnol J 3 (2), 27–46 (In Persian).
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold spring harbor laboratory press.
Sánchez PA, Salinas JG (1981) Low-input technology for managing Oxisols and Ultisols in tropical America. Adv. Agron 34, 279-406.
Schachtman DP (1998) Phosphorus Uptake by Plants: From Soil to Cell. PLANT Physiol 116 (2), 447–453.
Shahbazi K, Besharati H (2013) Overview of agricultural soil fertility status of Iran. L Manag J 1 (1), 1–15.
Uga Y, Ebana K, Abe J, et al. (2009) Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breed Sci 59 (1), 87–93.
Uga Y, Kitomi Y, Yamamoto E, et al. (2015) A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice 8 (1), 1-8.
Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62 (8), 2485–2494.
Uga Y, Sugimoto K, Ogawa S, et al. (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45 (9) 1097-1102.
Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105 (6-7) 890–897.
Ye X, Al-Babili S, Klöti A, et al. (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287 (5451), 303–305.
Zandi M, Hosseini R, Mohsenpour M, et al. (2019) Transformation of DRO1, OsNAC5, OsEXPA8 genes in order to improve rice root architecture modification and improved drought tolerance in rice. Gene Eng Biosafety J 8 (1), 77-89 (In Persian).