Valuation of genetic diversity of tomato (Solanum lycopersicum L.) based on the comparison of ISSR and SSR marker efficiency

Document Type : Research Paper


1 MSc Student, Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

2 Assistant Professor, Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

3 Assistant Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

4 Assistant Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

5 Researcher, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran


This study was conducted to evaluate the genetic diversity of tomato accessions selected from the core collection of National Plant Gene Bank of Iran (NPGBI) based on a comparative assessment of SSR and ISSR markers. Genetic diversity of species and cultivars is necessary to increase productivity and production, and if diversity is reduced, species and cultivars are in danger of extinction. Due to the importance of tomato as the second most consumed crop among vegetables, it is necessary to study it. Other objectives of this study are to compare the performance of SSR and ISSR markers in differentiating tomato genotypes and to find primers with the highest polymorphism.
Materials and methods
In this study, genetic diversity among and within tomato accessions collected from 8 geographic regions of Iran and 22 countries from the world were evaluated using 13 ISSR and 5 SSR primers.
The number of polymorphic alleles and the average of resolving power and marker index were related to the ISSR marker. However, the highest values of PIC for studied markers were obtained in the SSR primers. The molecular analysis of variance showed that both markers were suitable for the evaluation of diversity among species. Also, genetic diversity among the species was higher than within the species. The highest values of genetic diversity features were obtained in SSR primers. The lowest parameters were observed in the S. lycopersicum cherry in comparison to S. lycopersicum esculentum. In the cluster analysis, tomato accessions were distributed into four groups. PCoA was obtained for a more accurate explanation of the grouped accessions. These results indicated that SSR primers have had more tangible efficiency in showing the genetic diversity between Iranian and S. lycopersicum Cherry populations, while ISSR primers distinguished the S. lycopersicum esculentum accessions better than others.
The results indicated high genetic diversity among and within tomato species. According to genetic diversity features in both markers, it can be expected that the use of ISSR and SSR primers will be more effective for preparing genetic maps and studying population structure and/or accession grouping, respectively.


احمدزاده علیرضا؛ مجیدی هروان اسلام؛ علیزاده بهرام؛ امیدی امیرحسن (1389) بررسی عملکرد دانه، اجزای عملکرد و صفات مورفولوژیک گلرنگ بهاره با استفاده از روش­های آماری چند متغیره. مجله دانش نوین کشاورزی سال 1، صفحه 8-18.
رسولی آذر سیامک؛ صیدی مهدی؛ فاضلی آرش؛ محمدی یحیی (1389) بکارگیری نشانگر مولکولی ISSR در شناسایی لاین­های متنوع گوجه فرنگی (Solanum lycopersicum) برای دورگ گیری. ژنتیک نوین 14(3)، 273-277.
نقوی محمدرضا؛ قره یاضی بهزاد؛ حسینی سالکده قاسم (1388) نشانگرهای مولکولی. انتشارات دانشگاه تهران. چاپ سوم. ص. 340.
Ahmadzadeh AR, Majidi A, Alizadeh B, Omidi AH (2011) Evaluate of seed yield, yield components and morphological traits of safflower using multivariate methods. J agric modern know 1, 8-18 (In Persian).
Carvalho SIC, et al. (2015) Transferability of microsatellite markers of Capsicum annuum L. Genet Mol Res 14(3), 7937-7946.
Corrado G, Caramante M, Piffanelli P, Rao R (2014) Genetic diversity in Italian tomato landraces: Implications for development of core collection. Sci Hortic 168, 138-144.
Eiadthong W, Nakatsubo F, Utsunomiya N, Subahadrandbu S (2000) Studies on some Mangifera species. Acta Hortic 509, 143-151.
Ezekiel CN, Nwangburuka CC, Ajibade OA, Odebode AC (2011) Genetic diversity in 14 Tomato (Lycopersicon esculentum Mill.) varities in Nigerian markets by RAPD-PCR technique. Afr J Biotech 10(25), 4961-4967.
Fan-Juan M, Xu XY, Huang FL, Li JF (2010) Analysis of Genetic Diversity in Cultivated and Wild Tomato Varieties in Chinese Market by RAPD and SSR. Agric Sci China 9(10), 1430-1437.
Figueiredo AST, Resende JTV, Faria MV et al. (2015) Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers. Genet Mol Res 15(2), 1-13.
Foolad MR, Panthee DR (2012) Marker-Assisted selection in plant sciences. Plant Sci 31(2), 93-123.
Gonias ED, Ganopoulos I, Mellidou I et al. (2019) Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers. Genet Resour Crop Evol 66, 1295-1309.
Hassan NA, Mostafa Sh, Twfik A (2013) Assessment of genetic diversity of Tomato (Lycopersicon esculentum L.) germplasm using molecular markers (RAPD and ISSR). Egypt J Genet Cytol 42, 163-182.
Henareh M, Dursun A, Abdollahi Mandoulkhani B, Haliloglu K (2016) Assessment of genetic diversity in Tomato landraces using ISSR markers. Genetika 48(1), 25-35.
Herison C, Sutjahjo SH, Sulastrini I et al. (2018) Genetic diversity analysis in 27 Tomato accessions using morphological and molecular markers. Agrivita J Agric Sci 40(1), 36-44.
Hu X, Wang H, Chen J, Yang W (2012) Genetic diversity of Argentina Tomato varieties revealed by morphological traits, simple sequence repeat, and single nucleotide polymorphism markers. Pak J Bot 44(2), 485-492.
Kalia RK, Rai MK, Kalia S, Singh R, Dhawan A (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177(3), 309-334.
Kiani G, Siahchehreh M (2018) Genetic diversity in tomato varieties assessed by ISSR markers. Int J Veg Sci 24(4), 353-360.
Kumar PA, Reddy KR, Reedy RVSK et al. (2016) Genetic divergence studies in Tomato genotypes. Genet Plant Breed 11(4), 3071-3074.
Leonardi C, Ambrosino P, Esposito F, Fogliano V (2000) Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J Agric Food Chem 48, 4723-4727.
Lodhi MA, Ye GN, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis Species. Plant Mol Biol Rep 12(1), 6-13.
Lotti C, Marcotrigiano AR, De Giovanni C, et al. (2008) Univariate and multivariate analysis performed on bio-agronomical traits of Cucumis melo L. germplasm. Genet Resour Crop Evol 55, 511-522.
Marefatzadeh-Khameneh M, Fabriki-Ourang S, Sorkhilalehloo B et al. (2021) Genetic diversity in tomato (Solanum lycopersicum L.) germplasm using fruit variation implemented by tomato analyzer software based on high throughput phenotyping. Genet Resour Crop Evol 68(6), 2611-2625.
Mazzucato A, Bitocchi E, Mosconi P et al. (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116, 657-669.
Mirzaei S (2021) Application of molecular markers in plant sciences; an overview. Central Asian J Plant Sci 1(14): 192-200.
Naghavi MR, Gharehyazi B, Hoseini Salekdeh (2009) Molecular markers. Tehran university press, Iran.Third Edition, pp. 340 (In Persian).
Naz S, Zafrullah A, Shahzadhi, Munir N (2013) Assesment of genetic diversity within germplasm accessions in Tomato using morphological and molecular markers. J Anim Plant Sci 23(4), 1099-1106.
Oliveira CMB, Souza LC, Santos JO, Moulin MM, et al. (2022) Dominant versus codominant marker aiming to characterize Capsicum spp. Sci Hortic 303, 111226.
Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon, P. Seguin, M. Perrier, X. Glaszmann, J.C. editors. Genetic diversity of cultivated tropical plants, Boca Raton FL (USA), CRC Press, 2003. P. 360.
Powell WW, Koput KW, Smith-Doerr L (1996) Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology. Adm Sci Q 41(1), 116-145.
Priya VV, Saravanan KR, Prakash M, Anandan R (2019) Assessment of molecular diversity in Tomato genotypes using RAPD and SSR markers. Plant Arch 19(2), 3437-3445.
RasoliAzar S, Saidi M, Fazeli A, Mohammadi Y (2020) Utilization of ISSR Molecular Markers in Identification of Diverse Tomato (Solanum lycopersicum) Lines for Hybridization. Modern Genet 14(3), 273-277 (In Persian).
Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128, 9–17.
Robertson LD, Labate JA (2007) Genetic resources of tomato (Lycopersicon esculentum var. esculentum) and wild relatives. Genet Improv Sol crop 2, 25-75.
Sato S, et al. (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641.
Sazmosi C, Solmaz I, Sari N, Barsony C (2010) Morphological evaluation and comparison of Hungarian and Turkish melon (cucumis melo L.) germplasm. Sci Hortic 124, 170-182.
Shahlaei A, Torabi S, Khosroshahli M (2014) Efficiacy of SCoT and ISSR marekers in assesment of tomato (Lycopersicum esculentum Mill.) genetic diversity. Int J Biosci 5(2), 14-22.
Sharifova SS, Mehdiyeva SP, Abbasov MA (2017) Analysis of genetic diversity among different Tomato genotypes using ISSR DNA marker. Genetika 49(1), 31-42.
Tikunov YM, Khrustaleva LI, Karlov GI (2003) Application of ISSR markers in the genus Lycopersicon. Euphytica 131, 71-80.
USDA (2021)
Vargas JEE, Aguirre NC, Coronado YM (2020) Study of the genetic diversity of tomato (Solanum spp.) with ISSR markers. Rev Ceres Vicosa 67(3), 199-206.