Study of genes affecting the production of wool fibers in sheep based on ontology analysis

Document Type : Research Paper


Associate Professor, Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran


The importance of wool has led to extensive research on its structure and genetic since decades ago. Identifying genes affecting economic traits is one of the most important goals of breeding in sheep. The genetic and functional potential of genes can be used to obtain animal products with the best quality and quantity. For the analysis of large data, sequencing software is cost-effective, which has greatly helped to understand the mechanisms and genetic background of various phenotypic traits in sheep. Identifying different characteristics of candidate genes and types of genotypes related to important phenotypic traits is essential in animal breeding. Therefore, the aim of the present study is to identify the genes affecting the production of wool fibers in sheep based on the functional analysis of those genes.
Materials and methods
In order to identify genes affecting wool fibers in sheep, the data used in this research were downloaded from the GEO database with access number GSE85844. In the current study, the criterion for selecting genes is the expression difference in the range 0.3 < LogFC <-0.3 and P-value at the 5% level. After identifying and specifying the genes with significant difference (increased and decreased expression), DAVID database was used to analyze the ontology of genes. In order to investigate the interaction and relationship between the genes, the STRING database was used and the Cytoscape software package was utilized to analyze the created network.
1008 genes with different and significant expression were identified (p<0.05). Genes with Log FC <-0.3, have low expression and their number was 431, and genes with Log FC > 0.3 have high expression and their number is 577. The ontology results for CHRD, PLOD1, BMP4 and ITGA5 genes showed that these genes are effective in the pathways related to hair morphogenesis and construction, hair follicle regeneration and development and density of skin.
selecting to improve the quality of wool produced in sheep by using these findings will accelerate the genetic progress of related breeding programs.


فرهنگ فر همایون، بهدانی الهام (1396) شناسایی ریزRNAها، ژن‌های هدف و مسیرهای سیگنال‌دهی مرتبط با تولید شیر با استفاده ازmiRNA-seq. نشریه پژوهش در نشخوارکنندگان (5)4، ۷۳-۸۶.
حسانی ژیلا، نصیری محمدرضا، جوادمنش علی، طهمورث پور مجتبی ( 1397) آنالیز بیان ژن‌ها و رسم شبکه ژنی آپوپتوزیز در نژادهای مرغ بومی و تجاری راس تحت داده‌های RNA-seq. نشریه پژوهش­های علوم دامی ایران (10)1، 130-117.
محمدآبادی محمدرضا (1398) بیان ژن کالپاستاتین در بز کرکی راینی با استفاده از Real Time PCR. . مجله بیوتکنولوژی کشاورزی 11(4)، 219-235.
محمدآبادی محمدرضا (1399) بیان ژن ESR1 در بز کرکی راینی با استفاده از real time PCR‎. مجله بیوتکنولوژی کشاورزی 12(1)، 192-177.
محمدآبادی محمدرضا، اسدالله پور نعنایی حجت (1400) بیان ژن لپتین در بز کرکی راینی با استفاده ازReal Time PCR. مجله بیوتکنولوژی کشاورزی 13(1)، 214-197.
محمدآبادی محمدرضا، کرد محبوبه، نظری محمود (1397) مطالعه بیان ژن لپتین در بافت‌های مختلف گوسفند کرمانی با استفاده از  Real Time PCR. مجله بیوتکنولوژی کشاورزی 10(3)، 123-111.
Amiri Roudbar M, Mohammadabadi MR, Mehrgardi AA, Abdollahi-Arpanahi A (2017) Estimates of variance components due to parent-of-origin effects for body weight in Iran-Black sheep. Small Rumin Res 149, 1-5
Amiri Roudbar M, Abdollahi-Arpanahi R, Ayatollahi Mehrgardi A, et al. (2018) Estimation of the variance due to parent-of-origin effects for productive and reproductive traits in Lori-Bakhtiari sheep. Small Rumin Res 160, 95-102.
Ansari-Renani HR, Ebadi Z, Moradi S, et al. (2011) Determination of hair follicle characteristics, density and activity of Iranian cashmere goat breeds. Small Rumin Res 95(2-3), 128-132.
Barabasi A, Oltvai Z (2004) Network biology Understanding the cells functional organization. Nat Rev Genet 5(1), 101-113.
Bratka CB, Mitteregger G, Aichinger A, et al. (2002) Primary cell culture and morphological characterization of canine dermal papilla cells and dermal fibroblasts. Vet Dermatol 13(1), 1-6.
Barazandeh A, Mohammadabadi MR, Ghaderi-Zefrehei M, et al. (2016) Predicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm. Iran J Appl Anim Sci 6 (3), 571-579.
Barazandeh A, Mohammadabadi MR, Ghaderi-Zefrehei, et al. (2019) Whole genome comparative analysis of CpG islands in camelid and other mammalian genomes. Mammal Biol 98, 73-79.
Chapman RE, Ward RA (1979) Histological and biochemical features of the wool fiber and follicle. In: Black, J. L. and Reis, P. J. [eds]. physiology and Environmental Limitations to wool Growth. Armidale, Australian: Uni N E pub, unit, Pp. 193-208.
Dennis G, Sherman BT, Hosack DA, et al. (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(9), R60.
Ding H, Zhao H, Cheng G, et al. (2019). Analyses of histological and transcriptome differences in the skin of short-hair and long-hair rabbits. BMC genom 20(1), 1-12.
Ding H, Zhao H, Zhao X, et al. (2021). Analysis of histology and long noncoding RNAs involved in the rabbit hair follicle density using RNA sequencing. BMC genom 22(1), 1-10.
Ebrahimi F, Gholizadeh M, Rahimi-Mianji G, Farhadi A (2017) Detection of QTL for greasy fleece weight in sheep using a 50 K single nucleotidepolymorphism chip. Trop Anim Health Prod 49, 1657-1662.
Ghotbaldini H, Mohammadabadi MR, Nezamabadi-pour H, et al. (2019) Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed. Acta Scientiarum Anim Sci 41, e45282.
Gong H, Zhou H, Forrest R H J, et al. (2016) Wool keratin-associated protein genes in sheep—a review. enes 7 (6), p. 24.
Goonewarden LA, Okine E, Patrik D, Patrik N, Day P A et al (2002) Effect of feeding high energy –protein diets to goats. CAN J Anim Sci 82, 119-121.
Kealey T, Williams R, Philpott MP (1991). Intermediary metabolism of the human hair follicle. Annal N Y Academy Sci 642, 301-307.
Liu G, Liu R, Tang X, Cao J, Zhao S, Yu M (2015) Expression profiling reveals genes involved in the regulation of wool follicle bulb regression and regeneration in sheep. Int J Mol Sci 16(5), 9152-9166.
MacKinnon K M; Burton JL,am Zajac N (2009) Microarray analysis reveals difference in gene expression profiles of hair and wool sheep infected with Haemonchus contortus. In Vet immunol immunopathol 130, pp. 210–220.
Masoudzadeh SH, Mohammadabadi M, Khezri A, et al. (2020a) Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of Kermani lambs. Small Rumin Res 193, e106276.
Masoudzadeh SH, Mohammadabadi MR, Khezri A, et al. (2020b) Dlk1 Gene Expression in Different Tissues of Lamb. Iran J Appl Anim Sci 10 (4), 669-677.
Mohammadabadi MR (2016). Inter-Simple Sequence Repeat Loci associations with predicted breeding values of body weight in Kermani sheep. Genet 3rd Millennium 14, 4383-4390.
Mohammadabadi MR, Esfandyarpoor E, Mousapour A (2017) Using Inter Simple Sequence Repeat Multi-Loci Markers for Studying Genetic Diversity in Kermani Sheep. J Res Develop 5 (2), e154.
Mohammadabadi MR, Kord M, Nazari M (2018) Studying expression of leptin gene in different tissues of Kermani Sheep using Real Time PCR. Agric Biotechnol J 10 (3), 111-122 (In Persian).
Mohammadabadi MR, Masoudzadeh SH, Khezri A, et al. (2021) Fennel (Foeniculum vulgare) seed powder increases Delta-Like Non-Canonical Notch Ligand 1 gene expression in testis, liver, and humeral muscle tissues of growing lambs. Heliyon 7 (12), e08542.
Mohammadabadi MR (2019) Expression of calpastatin gene in Raini Cashmere goat using Real Time PCR. Agric Biotechnol J 11 (4), 219-235.
Mohammadabadi MR (2020) Expression of ESR1 gene in Raini Cashmere goat using real time PCR. Agric Biotechnol J 12 (1), 177-192 (In Persian).
Mohammadabadi MR, Asadollahpour Nanaei H (2021) Leptin gene expression in Raini Cashmere goat using Real Time PCR. Agric Biotechnol J 13 (1), 197-214.
Mohammadifar A, Mohammadabadi MR (2011) Application of Microsatellite Markers for a Study of Kermani Sheep Genome. Iran J Anim Sci 42 (4), 337-344.
Molinelli EJ, Korkut A, Wang W, et al. (2013) Perturbation biology: inferring signaling networks in cellular systems. PLoS comput biol 9(12), e1003290.
Mooney MA, Wilmot B (2015). Gene Set Analysis: A Step-By-Step Guide. American Journal of Medical Genetics Part B: Neuropsychiatr Genet 168, 517-527.
Nattrass G N (2000) Molecular and functional characterization of system ASC-like neutral amino acid transporter expressed in wool follicle. PhD thesis Adelid University, Australia.
Peng G, Luo L, Siu H, et al. (2010). Gene and pathway-based second wave analysis of genome-wide association studies. Eur J Hum Genet 18,111-117.
Perlo F, Bonato P, Teira G, et al. (2008) A Meat quality of lamb produced in the Mesobotamia region of Argentina finished on different diets. Meat Sci 79(3), 576-581.
Purvis IW; Franklin IR (2005) Major genes and QTL influencing wool production and quality: a review. Genet Sel Evol 37, S97-S107.
Safaei SMH, Dadpasand M, Mohammadabadi M, et al. (2023) An Origanum majorana Leaf Diet Influences Myogenin Gene Expression, Performance, and Carcass Characteristics in Lambs. Animals 13 (1), 14.
Shahsavari M, Mohammadabadi M, Khezri A, et al. (2021) Correlation between insulin-like growth factor 1 gene expression and fennel (Foeniculum vulgare) seed powder consumption in muscle of sheep. Anim Biotechnol 1-11.
Shahsavari M, Mohammadabadi M, Khezri A, et al. (2022) Effect of Fennel (Foeniculum Vulgare) Seed Powder Consumption on Insulin-like Growth Factor 1 Gene Expression in the Liver Tissue of Growing Lambs. Gene Expression 21(2), 21-26.
Szklarczyk D, Franceschini A, Kuhn M, et al. (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39, D561-D568.
Vanderpool CK, Gottesman S (2004) Involvement of a novel transcriptional activator and small RNA in post‐transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol microbiol 54(4), 1076-1089.
Wang H, Ma S, Xue L, et al. (2016) miR-488 determines coat pigmentation by down-regulating the pigment-producing gene pro-opiomelanocortin. Cell Mol Biol 62(12), 37-43.
Wicik Z, Gajewska M, Majewska A, et al. (2016) Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers. J Anim Breed Genet 133(1), 31-42.