Screening of Trichoderma strains by optimized conditions in test plate media for siderophore production and measuring of cellulytic enzyme

Document Type : Research Paper


1 Ph.D. Student, Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran

2 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran

3 Professor, Department of Plant Protection, Faculty of Agriculture, Valiasr University, Rafsanjan, Rafsanjan, Iran.

4 Assistant Professor, Department of Soil Science, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran


The production of siderophore and cellulase by Trichoderma species is one of the effective indexs in plant growth, effective control and management of pathogens as well as application in industry. Therefore, primary screening of best isolates is very important based on the defined indicators.
Materials and methods
In this study, the optimal conditions for the qualitative and quantitative production of siderophore and cellulase were investigated using test plate method for the initial screening of 27 Trichoderma strains. For measuring cellulase enzymes (Endoglucanase, exoglucanase and beta glucosidase), the reactive dyes phenol red, congo red (0.5, 0.05 and 0.015%) were used at pH levels of 4, 5, 7 and 9 with carbon sources including Avicel, CMC and cellobiose. Quantitative measurement of cellulase was investigated using the dinitrosalicylic acid method. Screening of Trichoderma strains for siderophore production was studied by CAS agar method as mycelial culture and crude extract in a well method.
The results of this research showed phenol red 0.015% under pH5 is the best reagent for detection of cellulase, Because of there is no inhibition on mycelial growth and the purple zone diameter is clear. In quantitative cellulase assay, the highest enzyme specific activity is related to T. harzianum CT-763 with 3 U/mg. T. atroviride CT-482, CT-473 and CT-865 were known as active strains in siderophore production, which were able to produce two types of siderophore, hydroximate and catechol. The results of siderophore production in liquid medium using the well method showed that T. afroharzianum CT-891 has the highest siderophore production by creating a halo zone of 1.2 cm, while T. harzianum CT566 produced the lowest amount of siderophore without creating halo.
Considering the application efficiency using of siderophore and cellulase in sustainable agriculture and importance of the role of Trichoderma species in production these metabolites, the well method for siderophore and dinitrosalicylic acid method for cellulase detection suggested. In this study T. atroviride and T. harzianum species had the highest production in siderophore and cellulase, respectively


اسدی فرزانه، علایی حسین، صابری ریسه روح الله، زین الدینی ریسه اعظم (1397) بررسی تاثیر سویه های Trichoderma جدا شده از خاک های شور و سدیمی در کنترل بیماری پوسیدگی فوزاریومی ریشه خیار (Fusarium solani). مهار زیستی در گیاه پزشکی 6 (2)، 43-45.
باقری خدیجه، شهبازی سمیرا، عسکری حامد، موجرلو شیده، امیرلو فرنگیس (1396) افزایش فعالیت آنزیم سلولاز در قارچ تریکودرما ویریده با پرتو گاما. علوم زیستی 4(4)، 329-336.
براهویی نسیبه، علایی حسین، صابری روح­الله، صداقتی ابراهیم (1401) ارزیابی اثرآنتاگونیستی گونه­های Trichoderma روی Phytophthora citrophthora، عامل پوسیدگی ریشه و طوقه­ مرکبات. دانش گیاهپزشکی ایران 53، 295-311.
جمالی سکینه، پنجه­که ناصر، محمدی امیرحسین (1395) مطالعه اثر بازدارندگی گونه های مختلف Trichoderma بر رشد رویشی و تولید زئوسپورهای Phytophthora drechsleri و بررسی نقش آنزیم های هیدرولیتیک. مجله بین­المللی خشکبار (7)2، 148-137.
خدادادی-پورارپنایی صدیقه، مهرابی کوشکی مهدی، فرخی­نژاد رضا (1399) بررسی اثرات ضد قارچی چند سویه Trichoderma علیه چهار بیمارگر ریشه و طوقه لوبیا چشم­بلبلی. فصلنامه علمی زیست­شناسی میکروارگانیسم­ها 10(39)، 51-63.

زواری فاطمه، صاحبانی نوازالل، اعتباریان حسن رضا (1391) اندازه­گیری فعالیت آنزیمی بتا 1و3 گلوکاناز برون یاخته­ای در جدایه­های Trichoderma virens  و انتخاب جدایه­های برتر در کنترل بوته­میری خیار. دانش کشاورزی و تولید پایدار (22) 4، 150-159.

مرید مائده، مظفری دوست­مراد (1392) بررسی تاثیر ریزمغذی ها روی میزان تولید و فعالیت آنزیم کیتیناز گونه هایی از تریکودرما. مجله بیمارهای گیاهی 49(3)، 341-335.
Ahmed E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7, 196–208.
Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12, 39-45.
Asadi F, Alaei H, Saberi Riseh R, Zeynadini Riseh A (2019). The effect of beneficial Trichoderma species isolated from sodic and saline soils to control Fusarium root rot of cucumber (Fusarium solani). J Biocontrol Plant Prot 6, 43-55 (In Persian).
Ayyandurai M, Akila R, Manonmani K et al. (2021) Phytostimulation and growth promotion activities of Trichoderma spp. on groundnut (Arachis hypogaea L.) crop. J Appl Nat Sci 13, 1172 - 1179.
Bagheri K, Shahbazi S, Askari H et al. (2018) Cellulase enzyme production enhancement in Trichoderma viride by gamma ray induced mutation. Nova Biologica Reperta 4, 329-336 (In Persian).
Barahoei N, Alaei H, Saberi Riseh R et al. (2023) Evaluation of the antagonistic effect of Trichoderma species on Phytophthora citrophthora, the causal agent of citrus root and crown rot. Iran J Plant Prot Sci 53, 295-311 (In Persian).
Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilization the principle of protein – dye binding. Anal Biochem 72, 248-254.
Chen L, Bóka B, Kedves O et al. (2019) Towards the biological control of devastating forest pathogens from the genus Armillaria. Forests 10, 1013.
Elad Y, Chet I (1983) Improved selective media for isolation of Trichoderma spp. or Fusarium spp. Phytoparasitica 11, 55-58.
Frascella A, Sarrocco S, Mello A et al. (2022) Biocontrol of Phytophthora xcambivora on Castanea sativa: selection of local Trichoderma spp. isolates for the management of ink disease. Forests 13, 1065.
Gajora HP, Vakharia DN (2012) Production of lytic enzymes by Trichoderma isolates during in vitro antagonism with Aspergillus niger, the causal agent of collar rot of peanut. Braz J Microbiol 43, 43-52.
Gams W, Bissett J (1998) Morphology and identification of Trichoderma. In: Trichoderma and Gliocladium. Basic Biology, Taxonomy and Genetics (Vol. 1). Harman GE, Kubicek CP (eds). Taylor and Francis Ltd. London. pp. 3-34.
Gao MJ, Yan JJ, Zhao Y (2021) Expression of a thermostable β-1,3-glucanase from Trichoderma harzianum in Pichia pastoris and use in oligoglucosides hydrolysis. Process Biochem 107, 74-82.
Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2, 113-118.
Gupta V, Schmoll M, Estrella AH (2014) Biotechnology and biology of Trichoderma. Oxford OX5 1GB, UK, Poland, 235-2.
Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46, 149–187.
Inbar J, Abramsky M, Cohen D, Chet I (1994) Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. Eur J Plant Pathol 100, 337-346.
Intana W, Wonglom P, Suwannarach N, Sunpapao A (2022) Trichoderma asperelloides PSU-P1 induced expression of pathogenesis-related protein genes against gummy stem blight of muskmelon (Cucumis melo) in field evaluation. Fungi 8, 156.
Jamali S, Panjehkeh N, Mohammadi AH (2016) Inhibition of Trichoderma species from growth and zoospore production of Phytophthora drechsleri and their effects on hydrolytic enzymes. Nuts 7, 137-148 (In Persian).
Katatny MH, Somitsch W, Robra KH (2000) Production of chitinase and β-1,3-glucanase by Trichoderma harzianum for control of the phytopathogenic fungus Sclerotium rolfsii. Food Technol Biotechnol 38, 173–180.
Khodadadi-Pourarpanaei S, Mehrabi-Koushki M, Farokhinejad R (2021) A study of the antifungal effects of Trichoderma strains on root and crown pathogens of Cowpea. Biol J Microorganism 10, 51-63 (In Persian).
Kim JJ, Kim JH, Lee YD (2014) Effective microwell plate-based screening method for microbes producing cellulase and xylanase and its application. J Microbiol Biotechnol 24, 1559-1565.
Knepper TP (2003) Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. TrAC Trends Anal Chem 22, 708-724.
Macías-Rodriguez L, Contreras- Cornejo HA, Adame-Garnica SG et al. (2020) The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiol Res 240, 126552.
Mannai S, Boughalleb-M’Hamdi N (2022) In vitro and in planta potential effect of some indigenous antagonists against Fusarium and pythiaceous species associated with peach seedlings decline. Egypt J Biol Pest Control 32, 1-10.
Milagres AMF, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37, 1-6.
Montesinos BS, Dianez F, Moreno-Gavíra A et al. (2020) Role of Trichoderma aggressivum f. europaeum as plant-growth promoter in horticulture. Agronomy 10, 1004.
Morid M, Zafari D (2013) Evaluation of micronutrients effects on production and activity of chitinase enzyme of some Trichoderma species. Iran J Plant Pathol 49, 335-341 (In Persian).
Muniroh MS, Nusaibah SA, Vadamalai G, Siddique Y (2019) Proficiency of biocontrol agents as plant growth promoters and hydrolytic enzyme producers in Ganoderma boninense infected oil palm seedlings. Curr Plant Biol 20, 100116.
Mustafa G, Anwar S, Joyia FA (2020) Molecular characterization and mycoparasitic aptitude of indigenous biocontrol agent Trichoderma harzianum. J Anim Plant Sci 30, 1508-1515.
Neethu K, Rubeena M, Sajith S et al. (2012) A novel strain of Trichoderma viride shows complete lignocellulolytic activities. Adv Biosci Biotechnol 3, 1160-1166.
Qi W, Zhao L (2013) Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol 53, 355-364.
Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47-56.
Sharma V, Salwan R, Sharma PN, Kanwar SS (2017) Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response. Int J Biol Macromol 95, 72-79.
Shin SH, Lim Y, Lee SE et al. (2001) CAS agar diffusion assay for the measurement of siderophores in biological fluids. J Microbiol Methods 44, 89-95.
Sookchaoy K, Panthachode S, Thipchu J (2009) Screening of Trichoderma spp. for Phytophthora root and foot rot on Citrus sinensis biocontrol. International Conference on the Role of Universities in Hands-On Education Chiang-Mai, Thailand. pp. 356-362.
Srivastava MP, Tiwari R, Sharma N (2013) Effect of different cultural variables on siderophores produced by Trichoderma spp. Int J Adv Res 1, 1-6.
Syam N, Sabahannur S, Nurdin A (2021) Effects of Trichoderma and foliar fertilizer on the vegetative growth of black pepper (Piper nigrum L.) seedlings. Int J Agron, 1-9.
Taherzadeh-Ghahfarokhi M, Panahi R, Mokhtarani B (2022) Medium supplementation and thorough optimization to induce carboxymethyl cellulase production by Trichoderma reesei under solid state fermentation of nettle biomass. Prep Biochem Biotechnol 52, 375-382.
Verma V, Joshi K, Mazumdar B (2012) Study of siderophore formation in nodule-forming bacterial species. Res J Chem Sci 2, 26-29.
Vinale F, Flematti G, Sivasithamparam K et al. (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72, 2032–2035.
Vinale F, Nigro M, Sivasithamparam K et al. (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. EFMS Microbiol 347, 123-129.
Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26, 379-407.
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a Guide to Methods and Applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.).Academic Press, New York. pp. 315-322.
Win TT, Malec P, Khan S, Fu P (2021) Newly isolated strain of Trichoderma asperellum from disease suppressive soil is a potential biocontrol agent to suppress Fusarium soil borne fungal phytopathogens. Plant Pathol 103, 549-561.
Xiang L, Lin Y, Tian Y (2020) Ammonium ions induce cellulase synthesis in Trichoderma koningii. Curr Microbiol 78, 3201-3211.
Yehuda Z, Shenker M, Romheld V, Marschner H et al. (1996) The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol 112, 1273-1280.
Yoon JH, Park JE, Suh DY (2007) Comparison of dyes for easy detection of extracellular cellulases in fungi. Mycobiology 35, 21-24.
Zavari F, Sahbani N, Etbarian HR (2014) Measurement of extracellular beta 1-3 glucanase enzyme activity in Trichoderma virens isolates and selection of superior isolates in the control of cucumber blight. Agric Sustain 22, 150-159 (In Persian).
Zhang YP, Hong J, Ye X (2009) Cellulase assays. In: Biofuels. Mielenz JR (ed). Springer: Humana Press. pp. 213-231.
Zhao L, Wang Y, Kong S (2020) Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress. Int Microbiol, 1-9.