Evaluation of some secondary metabolites, morphophysiological and biochemical characteristics of Calendula officinalis L. under the influence of chitosan elicitor in in vitro culture

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Horticultural Science and Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran.

2 Department of Horticultural Science and Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran

3 Department of Horticultural Science and Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Ira

10.22103/jab.2025.24064.1618

Abstract

Objective: Due to its important medicinal metabolites (including calenduloside, quercetin, and others), Calendula officinalis L. is considered an excellent source for new drugs. One of the biotechnological tools for enhancing the production of these metabolites is the use of the elicitation process in vitro culture. Therefore, the aim of this study was to improve the medicinal metabolites, morphophysiological characteristics, and biochemical properties of this plant under the influence of chitosan elicitor in vitro culture.
Materials and methods: In this study, the effects of different seed sterilization methods and seed coating on the germination rate and seed contamination of Calendula officinalis L. were evaluated. A factorial experiment was conducted in a completely randomized design with two factors (sterilization method and seed coating type) and four replications. Then, Low molecular weight chitosan elicitor was prepared in different concentrations (0, 25, 50, and 75 mg/L) and applied to the seeds. Finally, the effects of chitosan on the improvement of morphophysiological, metabolite, and biochemical traits of Calendula officinalis L. in vitro culture were investigated.
Results: The results of the interaction effect between sterilization method and seed coating showed that treatment S2C1 (second sterilization method, place in 10% benomyl fungicide for 5 minutes, place in 70% ethanol for 30 seconds, place in 1% sodium hypochlorite for 15 minutes, combined with no seed coating) had the highest germination percentage (100) compared to other treatments. The results of simple main effect analysis of sterilization methods showed that the highest and lowest contamination rates were related to the first (S1) and third (S3) sterilization methods, respectively. The results of the mean comparison indicated a significant increase in the traits of plant height, fresh weight of seedlings, number and length of roots, stem length, and leaf number and width in all chitosan concentrations compared to the control. The highest and lowest amounts of flavonoids, total phenol, antioxidant activity, anthocyanin, carotenoids, chlorophyll a and b, catalase, peroxidase, and proline content were found in the treatment with 50 mg/l chitosan and the control, respectively. The highest and lowest levels of malondialdehyde were observed in the control and 50 mg/l chitosan treatments.
Conclusion: Overall, the results showed that a chitosan concentration of 50 mg/l was more effective in improving the morphophysiological, metabolic, and biochemical traits of Calendula officinalis L. in vitro culture.

Keywords


Abdelaal, K., Attia, K. A., Niedbała, G., Wojciechowski, T., Hafez, Y., Alamery, S., Alateeq, T. K., & Arafa, S. A. (2021). Mitigation of Drought Damages by Exogenous Chitosan and Yeast Extract with Modulating the Photosynthetic Pigments, Antioxidant Defense System and Improving the Productivity of Garlic Plants. Horticulturae, 7(11), 510. https://doi.org/10.3390/horticulturae7110510
Acemi, A., Bayrak, B., Çakır, M., Demiryürek, E., Gün, E., Eddine El Gueddari, N., & Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cellular & Developmental Biology-Plant, 54, 537-544. https://doi.org/10.1007/s11627-018-9915-0
Aebi, H. (1974). Catalase, Methods of enzymatic analysis. Elsevier, pp. 673-684. https://doi.org/10.1016/B978-0-12-091302-2.50032-3
Ahmad, W., Zahir, A., Nadeem, M., Garros, L., Drouet, S., Renouard, S., Doussot, J., Giglioli-Guivarc’h, N., Hano, C., & Abbasi, B. H. (2019). Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process biochemistry, 79, 155-165. https://doi.org/10.1016/j.procbio.2018.12.025
Ahmadi, E., Nasr, S. M. H., Jalilvand, H., & Savadkoohi, S. K. (2012). Contamination control of microbe Ziziphus spina [christti] seed in vitro culture. Trees, 26, 1299-1304. https://doi.org/10.1007/s00468-012-0705-8
Ahmed, S. A., & Baig, M. M. V. (2014). Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi Journal of Biological Sciences, 21(5), 499-504. https://doi.org/10.1016/j.sjbs.2013.12.008
Ait Barka, E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608-614. https://doi.org/10.1007/s00299-003-0733-3
Algam, S., Xie, G., Li, B., Yu, S., Su, T., & Larsen, J. (2010). Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of plant Pathology, 593-600. https://doi.org/10.5897/AJMR10.549
Arora, D., Rani, A., & Sharma, A. (2013). A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacognosy reviews, 7(14), 179. https://doi.org/10.4103/0973-7847.120520
 Arya, S. S., Rookes, J. E., Cahill, D. M., & Lenka, S. K. (2022). Chitosan nanoparticles and their combination with methyl jasmonate for the elicitation of phenolics and flavonoids in plant cell suspension cultures. International Journal of Biological Macromolecules, 214, 632-641. https://doi.org/10.1016/j.ijbiomac.2022.06.145
Attaran Dowom, S., Karimian, Z., Mostafaei Dehnavi, M., & Samiei, L. (2022). Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biology, 22(1), 364. https://doi.org/10.1186/s12870-022-03689-4
Bates, L. S., Waldren, R., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207. https://doi.org/10.1007/BF00018060
 Bayraktar, M., Naziri, E., Akgun, I. H., Karabey, F., Ilhan, E., Akyol, B., Bedir, E., & Gurel, A. (2016). Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell, Tissue and Organ Culture (PCTOC), 127, 289-300. https://doi.org/10.1007/s11240-016-1049-7
Cai, Z., Kastell, A., Mewis, I., Knorr, D., & Smetanska, I. (2012). Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell, Tissue and Organ Culture (PCTOC), 108, 401-409. https://doi.org/10.1007/s11240-011-0051-3
Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M., & Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), 624. 
Chourykae, B, Sreenamkhum O (2018) Effect of Chitosan on Growth of In vitro Seedling Culture of Dendrobium lindleyi Steud. Bur Sci J, 669-681. https://doi.org/10.3390/agriculture10120624
Coelho, N., & Romano, A. (2022). Impact of chitosan on plant tissue culture: recent applications. Plant Cell, Tissue and Organ Culture (PCTOC), 148(1), 1-13. https://doi.org/10.1007/s11240-021-02156-6
Cola G, Cavenago B, Gardana CS, et al. (2024) Effect of Elicitor Treatments on Quality Attributes in Blueberry: Implications of Cultivar and Environmental Conditions. Plants 13, 1105. https://doi.org/10.1007/s11240-021-02156-6
de Souza Silva, P. T., de Souza, L. M., de Morais, M. B., de Moraes, M. M., da Camara, C. A. G., & Ulisses, C. (2022). Effect of biotic elicitors on the physiology, redox system, and secondary metabolite composition of Lippia alba cultivated in vitro. South African Journal of Botany, 147, 415-424. https://doi.org/10.1016/j.sajb.2022.01.042 
Dzung, N. A., Khanh, V. T. P., & Dzung, T. T. (2011). Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate polymers, 84(2), 751-755. https://doi.org/10.1016/j.carbpol.2010.07.066
Dzung, N. A., Thang, N. T., Suchiva, V., Chandrkrachang, S., Methacanon, P., & Peter, M. (2002). Effect of oligoglucosamine prepared by enzyme degradation on the growth of soybean. Advances of Chitin Science, 5, 463-467.
Fazal, H., Abbasi, B. H., Ahmad, N., & Ali, M. (2016). Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Applied biochemistry and biotechnology, 180, 1076-1092. https://doi.org/10.1007/s12010-016-2153-1
 Forouzandeh, M., Mohkami, Z., & Fazelinasab, B. (2019). Evaluation of biotic elicitors foliar application on functional changes, physiological and biochemical parameters of fennel (Foeniculum vulgare). Journal of Plant Production Research, 25(4), 49-65.  https://doi.org/10.22069/jopp.2018.14077.2262
Golkar, P., Taghizadeh, M., & Yousefian, Z. (2019). The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell, Tissue and Organ Culture (PCTOC), 137, 575-585. https://doi.org/10.1007/s11240-019-01592-9
Guan, Y.-j., Hu, J., Wang, X.-j., & Shao, C.-x. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B, 10, 427-433. https://doi.org/10.1631/jzus.B0820373
Guru, A., Dwivedi, P., Kaur, P., & Pandey, D. K. (2022). Exploring the role of elicitors in enhancing medicinal values of plants under in vitro condition. South African Journal of Botany, 149, 1029-1043. https://doi.org/10.1016/j.sajb.2021.10.014
Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and pharmaceutical bulletin, 36(6), 2090-2097. https://doi.org/10.1248/cpb.36.2090
Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
 Pourbeyrami Hir, Y., Adham, R., Chamani, E., Maleki Lajayer, H., & Hasanzadeh, M. (2022). Effect of chitosan on morpho-physiological traits and regeneration of Iris pseudacorus plantlets under in vitro conditions. Journal of Plant Physiology and Breeding, 12(2), 71-83.  https://doi.org/10.22034/jppb.2022.16255
Jami, S., Esmaeilzadeh, B. S., & Modarres, M. (2018). Effect of chitosan on micropropagation, secondary metabolites content and antioxidant activity of Salvia leriifolia Benth. Journal of Plant Physiology and Breeding, 31, 568-578. https://doi.org/10.22034/jppb.2022.16255
Jiao, J., Gai, Q.-Y., Wang, X., Qin, Q.-P., Wang, Z.-Y., Liu, J., & Fu, Y.-J. (2018). Chitosan elicitation of Isatis tinctoria L. hairy root cultures for enhancing flavonoid productivity and gene expression and related antioxidant activity. Industrial crops and products, 124, 28-35. https://doi.org/10.1016/j.indcrop.2018.07.056
Kahromi, S., & Khara, J. (2021). Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi. Journal of the Science of Food and Agriculture, 101(9), 3898-3907. https://doi.org/10.1002/jsfa.11030
Khan, M. S. I., Khatun, F., Afrin, S., & Hoque, M. (2020). Callus induction and plantlet regeneration in Chrysanthemum. Int. J. Bus. Soc. Sci. Res, 8(1), 06-10. 
Khan, T., Khan, T., Hano, C., & Abbasi, B. H. (2019). Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica. Industrial crops and products, 129, 525-535. https://doi.org/10.1016/j.indcrop.2018.12.048
Kohli, S. K., Handa, N., Bali, S., Arora, S., Sharma, A., Kaur, R., & Bhardwaj, R. (2018). Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicology and environmental safety, 147, 382-393. https://doi.org/10.1016/j.ecoenv.2017.08.051
Lagrimini, L. M., & Rothstein, S. (1987). Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant physiology, 84(2), 438-442. https://doi.org/10.1104/pp.84.2.438
Leal, F., Rodrigues, A., Fernandes, D., Nunes, F., Cipriano, J., Ramos, J., Teixeira, S., Vieira, S., Carvalho, L., & Pinto-Carnide, O. (2007). In vitro multiplication of Calendula arvensis for secondary metabolites extraction. (Ed.),^(Eds.). III International Symposium on Acclimatization and Establishment of Micropropagated Plants 812. pp. 251-256. https://doi.org/10.17660/ActaHortic.2009.812.33
Leelavathy, S., & Sankar, P. D. (2016). Curbing the Menace of Contamination in Plant Tissue Culture. Journal of Pure & Applied Microbiology, 10(3), 2145-2152.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes  (Methods in enzymology Vol. 148, pp. 350-382). Elsevier. https://doi.org/10.1016/0076-6879(87)48036-1 
Lima, A. d. M., Siqueira, A. S., Möller, M. L. S., Souza, R. C. d., Cruz, J. N., Lima, A. R. J., Silva, R. C. d., Aguiar, D. C. F., Junior, J. L. d. S. G. V., & Gonçalves, E. C. (2022). In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. Journal of Biomolecular Structure and Dynamics, 40(3), 1064-1073. https://doi.org/10.1080/07391102.2020.1821782 
Lin, J.-Y., & Tang, C.-Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food chemistry, 101(1), 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014
Mahdavi, B., Modarres Sanavy, S., Aghaalikhani, M., Sharifi, M., & Alavi Asl, S. (2014). Effect of foliar application of chitosan on growth and biochemical characteristics of safflower (Carthamus tinctorius L.) under water deficit stress. Iranian Journal of Field Crops Research, 12(2), 229-236. https://doi.org/10.22067/gsc.v12i2.39153
Malekpoor, F., Salimi, A., & Ghasemi Pirbalouti, A. (2017). Effect of bio-elicitor chitosan on physiological and morphological properties in purpule basil (Ocimum basilicum L.) under water deficit. Journal of Plant Ecophysiology, 8(27), 56-71. https://dorl.net/dor/20.1001.1.20085958.1395.8.27.5.6
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3). https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nahar, S. J., Kazuhiko, S., & Haque, S. M. (2012). Effect of polysaccharides including elicitors on organogenesis in protocorm-like body (PLB) of Cymbidium insigne in vitro. Journal of Agricultural Science and Technology. B, 2(9B), 1029.
Nourafcan, H. (2019). Effect of chitosan on physiological and morphological traits of Lemon Verbena (Lippia citriodora L.) under in vitro and field conditions. Journal of Crop Ecophysiology, 13(49 (1)), 73-86. https://doi.org/10.30495/jcep.2019.664838
Obsuwan, K., Yoodee, S., & Uthairatanakij, A. (2010). Application of chitosan on in vitro growth of Rhynchostylis gigantea protocorms and seedlings. (Ed.),^(Eds.). I International Orchid Symposium 878. pp. 283-288. https://doi.org/10.17660/ActaHortic.2010.878.35
Olennikov, D. N., & Kashchenko, N. I. (2022). Marigold metabolites: Diversity and separation methods of Calendula genus phytochemicals from 1891 to 2022. Molecules, 27(23), 8626. https://doi.org/10.3390/molecules27238626
Paris, L., García-Caparrós, P., Llanderal, A., Silva, J., Reca, J., & Lao, M. (2019). Plant regeneration from nodal segments and protocorm-like bodies (PLBs) derived from Cattleya maxima J. Lindley in response to chitosan and coconut water. Propagation of Ornamental Plants, 19(1), 18-23. https://www.cabidigitallibrary.org/doi/full/10.5555/20203245875
Rad, Z. P., Mokhtari, J., & Abbasi, M. (2019). Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. International Journal of Biological Macromolecules, 135, 530-543. https://doi.org/10.1016/j.ijbiomac.2019.05.204
Rahman, M., Mukta, J. A., Sabir, A. A., Gupta, D. R., Mohi-Ud-Din, M., Hasanuzzaman, M., Miah, M. G., Rahman, M., & Islam, M. T. (2018). Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PloS one, 13(9), e0203769. https://doi.org/10.1371/journal.pone.0203769
Mitu, R., Velicevici, G., Madoşă, E., Camen, D., Ciulca, A., Ciulca, S., & Lupulescu, C. (2020). Research on the variability of some morphological characteristics in local populations of Calendula officinalis L. Journal of Horticulture, Forestry and Biotechnology, 24, 80-83. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20219977355
Razavizadeh, R., Adabavazeh, F., & Komatsu, S. (2020). Chitosan effects on the elevation of essential oils and antioxidant activity of Carum copticum L. seedlings and callus cultures under in vitro salt stress. Journal of Plant Biochemistry and Biotechnology, 29, 473-483. https://doi.org/10.1007/s13562-020-00560-1
Safikhan, S., Khoshbakht, K., Chaichi, M. R., Amini, A., & Motesharezadeh, B. (2018). Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 10, 49-58. https://doi.org/10.1016/j.jarmap.2018.06.002
Salachna, P., & Zawadzińska, A. (2014). Effect of chitosan on plant growth, flowering and corms yield of potted freesia. Journal of ecological engineering, 15(3). https://doi.org/10.12911/22998993.1110223
Santo Pereira, A. E., Silva, P. M., Oliveira, J. L., Oliveira, H. C., & Fraceto, L. F. (2017). Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids and Surfaces B: Biointerfaces, 150, 141-152. https://doi.org/10.1016/j.colsurfb.2016.11.027
Shah, M., Jan, H., Drouet, S., Tungmunnithum, D., Shirazi, J. H., Hano, C., & Abbasi, B. H. (2021). Chitosan elicitation impacts flavonolignan biosynthesis in Silybum marianum (L.) Gaertn cell suspension and enhances antioxidant and anti-inflammatory activities of cell extracts. Molecules, 26(4), 791. https://doi.org/10.3390/molecules26040791
Shahane, K., Kshirsagar, M., Tambe, S., Jain, D., Rout, S., Ferreira, M. K. M., Mali, S., Amin, P., Srivastav, P. P., & Cruz, J. (2023). An updated review on the multifaceted therapeutic potential of Calendula officinalis L. Pharmaceuticals, 16(4), 611. https://doi.org/10.3390/ph16040611
Silva da Rocha, A., Rocha, E. K., Alves, L. M., Amaral de Moraes, B., Carvalho de Castro, T., Albarello, N., & Simões-Gurgel, C. (2015). Production and optimization through elicitation of carotenoid pigments in the in vitro cultures of Cleome rosea Vahl (Cleomaceae). Journal of Plant Biochemistry and Biotechnology, 24, 105-113. https://doi.org/10.1007/s13562-013-0241-7
Silva, V., Singh, R. K., Gomes, N., Soares, B. G., Silva, A., Falco, V., Capita, R., Alonso-Calleja, C., Pereira, J. E., & Amaral, J. S. (2020). Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants, 9(2), 178. https://doi.org/10.3390/antiox9020178
Smith, R. H. (2013). Plant tissue culture: techniques and experiments. academic press. https://doi.org/10.1016/B978-0-12-650340-1.X5001-9
Soland, S., & Laima, S. (1999). Phenolics and cold tolerance of Brassica napus. Plant Agriculture, 1, 1-5. 
Tantasawat, P., Wannajindaporn, A., Chantawaree, C., Wangpunga, C., Poomsom, K., & Sorntip, A. (2010). Chitosan stimulates growth of micropropagated plantlets. (Ed.),^(Eds.). I International Orchid Symposium 878.  pp. 205-212. https://doi.org/10.17660/ActaHortic.2010.878.24
Van, S. N., Minh, H. D., & Anh, D. N. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis and Agricultural Biotechnology, 2(4), 289-294. https://doi.org/10.17660/ActaHortic.2010.878.24
Veraplakorn, V., & Kudan, S. (2021). Chitosan elicitor stimulation of in vitro growth and ex vitro acclimatization of Lantana camara L. Agriculture and Natural Resources, 55(3), 431–439-431–439. https://doi.org/10.34044/j.anres.2021.55.3.13
 Victório, C. P., Lage, C. L. S., & Sato, A. (2012). Tissue culture techniques in the proliferation of shoots and roots of Calendula officinalis. Revista Ciência Agronômica, 43, 539-545. https://doi.org/10.1590/S1806-66902012000300017
Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiology, 64(1), 88-93. https://doi.org/10.1104/pp.64.1.88
Zhang, X., Li, K., Liu, S., Zou, P., Xing, R., Yu, H., Chen, X., Qin, Y., & Li, P. (2017). Relationship between the degree of polymerization of chitooligomers and their activity affecting the growth of wheat seedlings under salt stress. Journal of agricultural and food chemistry, 65(2), 501-509. https://doi.org/10.1021/acs.jafc.6b03665
Zhao, J.-L., Zhou, L.-G., & Wu, J.-Y. (2010). Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Applied Microbiology and Biotechnology, 87, 137-144. https://doi.org/10.1007/s00253-010-2443-4
Zou, P., Li, K., Liu, S., Xing, R., Qin, Y., Yu, H., Zhou, M., & Li, P. (2015). Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohydrate polymers, 126, 62-69. https://doi.org/10.1016/j.carbpol.2015.03.028