Identification and validation of simple sequence repeats (SSRs) Markers for Androctonus crassicauda scorpion using RNA-Seq data

Document Type : Research Paper

Authors

1 Ph. D student in Department of Animal Science, Faculty of Animal science and Food Technology, Agricultural Science and Natural Resources University of Khuzestan, Mollasani, Iran.

2 Department of Animal Science, Faculty of Animal science and Food Technology, Agricultural Science and Natural Resources University of Khuzestan, Mollasani, Iran.

3 Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Science and Natural Resources University of Khuzestan

4 Assistant Professor, Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran.

10.22103/jab.2025.24286.1625

Abstract

Objective
Simple sequence repeats (SSRs) markers or microsatellites are one of the best and most complete molecular tools in the study of genetic diversity due to the appropriate genomic coverage and high repeatability. Simple sequence repeats markers for the scorpion Andractonus crassicouda have not been reported so far. Therefore, this study was conducted with the aim of identifying and validating simple repeat sequence markers of the scorpion Andractonus crassicouda using RNA-Seq data.
Materials and methods
The samples were evaluated qualitatively and quantitatively after RNA extraction from the scorpion venom gland. Then the samples were sequenced with the Illumina HiSeq 2000 platform. Reconstruction of transcripts was done by De novo assembly method using Trinity software. Next, in order to identify new SSR markers, the transcriptome of the scorpion Andrachtonus crassicouda was analyzed using FullSSR software (version 1.5). To validate the identified SSR markers, 8 pairs of primers were designed by PRIMER 3 software and evaluated by polymerase chain reaction method on 60 DNA samples extracted from scorpion tissue.
Results
Assembling transcripts by the Trinity program generated a total of 744,804 transcripts and 563,526 unigenes. In this study, the examination of 952,725 sequences by FullSSR software led to the identification of 315,395 SSR markers. Among SSRs, two and three nucleotide repeats accounted for the highest number of repetitions with 71.85% and 22.36%, respectively. Among the 8 studied loci, only 2 loci showed polymorphism. The expected and observed heterozygosity for the RK1354 locus was calculated as 0.765 and 0.683 respectively, and for the NK1362 locus as 0.768 and 0.633 respectively. The fixation index statistic (Fis) for both loci was almost 0.1, which indicates low inbreeding in the population. In addition, the chi-square test showed that the population was not in Hardy-Weinberg equilibrium for both loci.
Conclusions
The different criteria of genetic diversity all indicate that the population is highly diverse, but some factors reduce the diversity among the studied population. This means that the population is out of balance and the number of observed heterozygotes is less than the expected heterozygotes. It is necessary to investigate the factors that have led to the reduction of diversity to prevent its further reduction. In general, the results of this research showed that new SSRs can be useful for understanding the population structure and investigating the genetic diversity of the scorpion Andractonus crassicouda.

Keywords


Alavi, M., Mozafari, M.R., Ghaemi, S., Ashengroph M., Hasanzadeh Davarani, F., & Mohammadabadi, M. (2022). Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study. Biomedicines, 10(12), e3074. https://doi.org/10.3390/biomedicines10123074.
Amiri Roudbar, M., Mohammadabadi, M.R., Ayatollahi Mehrgardi, A., Rostami, A. A. Momen, M., Morota, G., Brito Lopes, F., Gianola, D., & Rosa, G. (2020). Integration of single nucleotide variants and whole-genome DNA methylation profiles for classification of rheumatoid arthritis cases from controls. Heredity, 124, 658-674. https://doi.org/10.1038/s41437-020-0301-4.
Barazandeh, A., Mohammadabadi, M.R., Ghaderi-Zefrehei M., & Nezamabadi-Pour, H. (2016). Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features. Czech Journal of Animal Science, 61(11), 487–495. https://doi.org/10.17221/78/2015-CJAS
Bordbar, F., Mohammadabadi, M., Jensen, J., Xu, L., Li, J., & Zhang, L. (2022). Identification of candidate genes regulating carcass depth and hind leg circumference in simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing. Animals, 12(9), e1103. https://doi.org/10.3390/ani12091103.
Contente, A., Dittmer, A., Koch, M.C., Roth, J., & Dobbelstein, M. A. (2002). A polymorphic microsatellite that mediates induction of PIG3 by p53. Nature Genetics, 30(3), 315–320. https://doi.org/10.1038/ng836.
Corney, D.C., & Basturea, G.N. (2016). RNA-seq using next generation sequencing. Materials and Methods, 3, 203. https://doi.org/10.13070/mm.en.3.203
Dehghani, R., Djadid, N.D., Shahbazzadeh, D., & Bigdelli, S. (2009). Introducing Compsobuthus matthiesseni (Birula, 1905) scorpion as one of the major stinging scorpions in Khuzestan, Iran. Toxicon, 54 (3), 272-5. https://doi.org/10.1016/j.toxicon.2009.04.011.
Dehghani, R., Ghorbani, A., Varzandeh, M., & Karami-Robati, F. (2023). Toxicity Mechanism of Dangerous Scorpion Stings in Iran. Journal of Arthropod-Borne Disease, 17(2), 105-119. https://doi.org/10.18502/jad.v17i2.13616
Dehghani, R., Khobdel, M., & Sabati, H. (2018). Control of scorpions in military environments: a review study. Journal of Military Medicine, 20(1), 3-13. http://eprints.bmsu.ac.ir/id/eprint/703
Dunlop, J.A. (2010). Geological history and phylogeny of Chelicerata. Arthropod Structure & Development, 39, 124–142. https://doi.org/10.1016/j.asd.2010.01.003
Ebrahimi, M., Azizi, K., Moemenbellah-Fard, M.D., Fakoorziba, M.R., & Soltani, A. (2015). Morphometry Indices of the Black Fat-tailed Scorpion Androctonus crassicauda (Scorpiones Buthidae), from Fars Province, Southern Iran. Journal of Entomology, 12(1), 39-47. https://doi.org/10.3923/je.2015.39.47
Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 5, 435–445. https://doi.org/10.1038/nrg1348
Ghorbani, A., Mansouri, B., & Baradaran, M. (2021). Effects of climate variables on the incidence of scorpion stings in Iran for five years. Journal of Venomous Animals and Toxins including Tropical Diseases, 27, e20200110. https://doi.org/10.1590/1678-9199-JVATITD-2020-0110.
Haas, B.J., Papanicolaou, A., Yassour, M, Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M. MacManes, M.D. Ott, M.m Orvis, J., & Pochet, N. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols, 8, 1494-1512. https://doi.org/10.1038/nprot.2013.084
Hefferon, T.W., Groman, J.D., Yurk, C.E., & Cutting, G.R. (2004). A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proceedings of the National Academy of Sciences of USA, 101(10), 3504–35. https://doi.org/10.1073/pnas.0400182101.
Howard, R.J., Edgecombe, G.D., Legg, D.A., Pisani, D., & Lozano-Fernandez, J. (2019) Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks. Organisms Diversity Evolution, 19, 71–86. https://doi.org/10.1007/s13127-019-00390-7
Koohgivi, K. A., Rooshanfekr, H. A., Nazari, M., & Tatar, A. (2019). Effect of DL- Methionine Replacement with L- Methionine and Different Dietary Protein Levels on Myostatin Gene Expression in Japanese Quails. Agricultural Biotechnology Journal, 11(2), 23-36. (In Persian). https://doi.org/10.22103/jab.2019.13274.1099
Li, Y.C., Korol, A.B., Fahima, T., & Nevo, E. (2004). Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution, 21(6), 991–1007. https://doi.org/10.1093/molbev/msh073
Luca, M., Danilo, B., Giorgia, G., Adriana, C., & Oliana, C. (2021). De novo transcriptome assembly, functional annotation and characterization of the Atlantic bluefin tuna (Thunnus thynnus) larval stage. Marine Genomics, 58, 100834. https://doi.org/10.1016/j.margen.2020.100834
Mirkin, S. (2007). Expandable DNA repeats and human disease. Nature, 447, 932–940. https://doi.org/10.1038/nature05977
Mohamadi Ahvazi, G., Beigi Nassiri, M.T., Nazari, M., & Sadr. A.S. (2024). Identification and validation of simple sequence repeats (SSR) markers for yellowfin barbel (Luciobarbus xanthopterus) using RNA-Seq data. Iranian Scientific Fisheries Journal, 33 (1), 15-27 (In Persian). https://doi.org/10.22092/ISFJ.2024.131190
Mohamadi ahvazi, G., Nazari, M., Mohamadabadi, M.R., & Heidari R. (2019). Genetic and phylogenetic analysis of mitochondrial HVR1 region in three breeds of Iranian sheep. Modern Genetic Journal, 14(3), 211-219 (In Persian). http://mg.genetics.ir/article-1-110-en.html
Mohammadabadi, M., Babenko Ivanivna, O., Borshch, O., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024). Measuring the relative expression pattern of the UCP2 gene in different tissues of the Raini Cashmere goat. Agricultural Biotechnology Journal, 16(3), 317-332. https://doi.org/10.22103/jab.2024.24337.1627
Mohammadabadi, M., Kord, M., & Nazari, M. (2018). Studying expression of leptin gene in different tissues of Kermani Sheep using Real Time PCR. Agricultural Biotechnology Journal, 10(3), 111-123 (In Persian). https://jab.uk.ac.ir/article_2211.html?lang=en
Mohammadabadi, M., Ghasemi Meymandi, M., & Montazeri, M. (2021). The Study of genetic diversity of camels in north of Kerman province using F statistics. Breeding and Improvement of Livestock, 1(2), 5-17 (In Persian). https://doi.org/10.22034/bilj.2021.144024
Nemati, I., Sedghi, M., Hoseini Salekdeh, G., Tavakkol afshari, R., & Naghavi, M. (2020). De novo tanscriptome sequencing and functional annotation of differentially expressed genes in large and small seeds of common cocklebur (Xanthium strumarium L.) during seed development. Iranian Journal of Seed Science and Technology, 8(2), 211-227 (In Persian). https://doi.org/10.22034/ijsst.2019.122712.1220
Ozkan, O., Ahmet, C., & Zafer, K. (2010). A study on the genetic diversity of Androctonus Crassicauda from Turkey. Journal of Venomous Animals and Toxins including Tropical Diseases, 16(4), 599-606. https://doi.org/10.1590/S1678-91992010000400010 
Li, Q., Su, X., Ma, H., Du, K., Yang, M., Chen, B., Fu, S., Fu, T., Xiang C., Zhao, Q., & Xu, L. (2021). Development of genic SSR marker resources from RNA‑seq data in Camellia japonica and their application in the genus Camellia. Scientific Reports, 11, 9919. https://doi.org/10.1038/s41598-021-89350-w
Rabieh, M.H., Rooshanfekr, M., Nazari, M., & Ghorbani, M.R. (2020). Gene expression of antioxidant enzymes fed wild pistachio (Pistachio atlantica), purslane (portulaca oleracea) extract and vitamin E under in broiler chickens under heat stress condition. Iranian Veterinary Journal, 17(2), 51-60 (In Persian). https://doi.org/10.22055/IVJ.2019.154392.2084
Rohipoor, M., Nazari, M., & Beigi Nassiri, M.T. (2019). Genetic and Phylogenetic Analysis of Adani Goat Population Based on Cytochrome B Gene. Research on animal production, 10(26), 84-89 (In Persian). https://doi.org/10.29252/rap.10.26.84
Rohipoor, M., Nazari, M., & Beigi Nassiri, M.T. (2021). Population structure, Genetic diversity and phylogenetic analysis of control region of mtDNA in Adani goat breed. Modern Genetic Journal, 15(4), 297-304 (In Persian). http://mg.genetics.ir/article-1-94-en.html
Sabahi, R., Nazari, M., Beigi Nassiri, M.T., & ghorbani, M.R. (2020). The Effect of Vitex Agnuse Castus Fruit Powder on Hypothalamic GnRH Gene Expression in Laying Hens. Research on Animal Production, 11(30), 92-100 (In Persian). https://doi.org/10.52547/rap.11.30.92
Safaei, S.M.H., Dadpasand, M., Mohammadabadi, M., Atashi, H., Stavetska, R., Klopenko, N., & Kalashnyk, O. (2022). An origanum majorana leaf diet influences myogenin gene expression, performance, and carcass characteristics in Lambs. Animals (Basel), 13(1), 14. https://doi.org/10.3390/ani13010014
Salabi, F., Nemati, M., & Lari Baghal, M. (2024). Fractionation and enzymes activity measurement of the scorpion Androctinus crassicoda (Scorpionida: Buthidae) venom. Iranian Veterinary Journal, 20(1), 109-120. https://doi.org/10.22055/IVJ.2023.422895.2646
Shakeri, R., Javanmard, A., Hasanpur, K., Abbasi, M., Mazlom, S.M., Khansefid, M., & Rahimi Varposhti, M. (2021). Assessment of genetic diversity within Holstein population using bovine SNP chip data. Research on Animal Production, 12(32), 140-149 (In Persian). https://doi.org/10.52547/rap.12.32.140
Toth, G., Gaspari, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 10(7), 967–981. https://doi.org/10.1101/gr.10.7.967.
Trifonov, E.N. (2004). Tuning function of tandemly repeating sequences: A molecular device for fast adaptation. Springer Nature, Netherlands, pp 115-138.
Wang, C., Du, L.M., Li, P., Yang, M., Li, W., & Shen, Y. (2015). Distribution patterns of microsatellites in the genome of the german cockroach (Blattella germanica). Acta Entomologica Sinica, 58(10), 1037–1045.
Wang, C., Kubiak, L., Du, L., Li, W., Jian, Z., Tang, C., Fan, Z., Zhang, X., & Yue, B. (2016). Comparison of microsatellite distribution in genomes of Centruroides exilicauda and Mesobuthus martensii. Gene, 594(1), 41-46. https://doi.org/10.1016/j.gene.2016.08.047
Wen, S., Li, P., Wang, F., Li, J., Liu, H., & Li, N. (2020). De novo assembly and microsatellite marker development of the transcriptome of the endangered Brachymystax lenok tsinlingensis. Genes & Genomics, 42(7), 727-734. https://doi.org/10.1007/s13258-020-00939-3.
Ji, Y.J., Leng, L., Shi, C.M., Hua, Y.P., & Zhang, D.X. (2008). Eight polymorphic microsatellite markers developed in the Chinese scorpion, Mesobuthus martensii (Scorpiones: Buthidae). Molecular Ecology Resources, 8(6), 1454–1456. https://doi.org/10.1111/j.1755-0998.2008.02215.x
Zane, L., Bargelloni, L., & Patarnello, T. (2002). Strategies for microsatellite isolation. Molecular Ecology, 11(1), 1–16. https://doi.org/10.1046/j.0962-1083.2001.01418.x.