Alavi, M., Mozafari, M. R., Ghaemi, S., Ashengroph, M., Hasanzadeh Davarani, F., & Mohammadabadi, M. (2022). Interaction of epigallocatechin gallate and quercetin with spike glycoprotein (S-Glycoprotein) of SARS-CoV-2: In silico study.
Biomedicines, 10(12)
, 3074.
https://doi.org/10.3390/biomedicines10123074.
Amiri Roudbar, M., Mohammadabadi, M. R., Ayatollahi Mehrgardi, A., Abdollahi-Arpanahi, R., Momen, M., Morota, G., Brito Lopes, F., Gianola, D., & Rosa, G. J. M. (2020). Integration of single nucleotide variants and whole-genome DNA methylation profiles for classification of rheumatoid arthritis cases from controls.
Heredity, 124(5), 658–674.
https://doi.org/10.1038/s41437-020-0301-4
Barazandeh, A., Mohammadabadi, M. R., Ghaderi-Zefrehei, M., & Nezamabadi-Pour, H. (2016). Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features.
Czech Journal of Animal Science, 61(11), 487–495.
https://doi.org/10.17221/78/2015-CJAS
Bhatt, D. P., Mills, C. A., Anderson, K. A., Henriques, B. J., Lucas, T. G., Francisco, S., Liu, J., Ilkayeva, O. R., Adams, A. E., Kulkarni, S. R., Backos, D. S., Major, M. B., Grimsrud, P. A., Gomes, C. M., & Hirschey, M. D. (2022). Deglutarylation of glutaryl-CoA dehydrogenase by deacylating enzyme SIRT5 promotes lysine oxidation in mice.
The Journal of Biological Chemistry, 298(4), 101723.
https://doi.org/10.1016/j.jbc.2022.101723
Bind, S., Bind, S., Sharma, A. K., & Chaturvedi, P. (2022). Epigenetic modification: A key tool for secondary metabolite production in microorganisms.
Frontiers in Microbiology, 13, 784109.
https://doi.org/10.3389/fmicb.2022.784109
Bordbar, F., Mohammadabadi, M., Jensen, J., Xu, L., Li, J., & Zhang, L. (2022). Identification of candidate genes regulating carcass depth and hind leg circumference in Simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing analyses.
Animals (Basel), 12(9), 1103.
https://doi.org/10.3390/ani12091103
Borodina, I., & Nielsen, J. (2014). Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
Biotechnology Journal, 9(5), 609–620.
https://doi.org/10.1002/biot.201300445
Choi, H. S., Lee, S. Y., Kim, T. Y., & Woo, H. M. (2010). In silico identification of gene amplification targets for improvement of lycopene production.
Applied and Environmental Microbiology, 76(10), 3097–3105.
https://doi.org/10.1128/AEM.00115-10
Dolce, V., Cappello, A. R., & Capobianco, L. (2014). Mitochondrial tricarboxylate and dicarboxylate-tricarboxylate carriers: from animals to plants.
IUBMB life(International Union of Biochemistry and Molecular Biology), 66(7), 462–471.
https://doi.org/10.1002/iub.1290
Dunn, W. B., & Winder, C. L. (2011). Sample preparation related to the intracellular metabolome of yeast methods for quenching, extraction, and metabolite quantitation.
Methods in Enzymology, 500, 277–297.
https://doi.org/10.1016/B978-0-12-385118-5.00015-3
Feist, A. M., Zielinski, D. C., Orth, J. D., Schellenberger, J., Herrgard, M. J., & Palsson, B. Ø. (2010). Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli.
Metabolic Engineering, 12(3), 173–186.
https://doi.org/10.1016/j.ymben.2009.10.003
Heerboth, S., Lapinska, K., Snyder, N., Leary, M., Rollinson, S., & Sarkar, S. (2014). Use of epigenetic drugs in disease: An overview.
Genetics & Epigenetics, 6, 9–19.
https://doi.org/10.4137/GEG.S12270
Heidarpour, F., Mohammadabadi, M. R., Zaidul, I. S. M., Maherani, B., Saari, N., Hamid, A. A., Abas, F., Manap, M. Y. A, Mozafari, M. R, (2011). Use of prebiotics in oral delivery of bioactive compounds: a nanotechnology perspective.
Die Pharmazie 66(5), 319-324.
http://dx.doi.org/10.1691/ph.2011.0279
Kang, J. G., Park, J. S., Ko, J. H., & Kim, Y. S. (2019). Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system.
Scientific Reports, 9(1), 11960.
https://doi.org/10.1038/s41598-019-48130-3
Khabiri, A., Toroghi, R., Mohammadabadi, M., & Tabatabaeizadeh, S. E. (2023). Introduction of a Newcastle disease virus challenge strain (sub-genotype VII.1.1) isolated in Iran.
Veterinary Research Forum, 14(4), e221.
https://doi.org/10.30466/vrf.2022.548152.3373
Kim, B., Kim, W. J., Kim, D. I., & Lee, S. Y. (2015). Applications of genome-scale metabolic network model in metabolic engineering.
Journal of Industrial Microbiology & Biotechnology, 42(3), 339–348.
https://doi.org/10.1007/s10295-014-1554-9
Leschelle, X., Delpal, S., Goubern, M., Blottière, H. M., & Blachier, F. (2000). Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells.
European Journal of Biochemistry, 267(21), 6435–6442.
https://doi.org/10.1046/j.1432-1327.2000.01731.x
Ma, Y., Zu, Y., Huang, S., & Stephanopoulos, G. (2023). Engineering a universal and efficient platform for terpenoid synthesis in yeast.
Proceedings of the National Academy of Sciences of the United States of America, 120(1), e2207680120.
https://doi.org/10.1073/pnas.2207680120
Mohammadabadi, M., Babenko, I. O., Borshch, O., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024). Measuring the relative expression pattern of the
UCP2 gene in different tissues of the Raini Cashmere goat.
Agricultural Biotechnology Journal, 16(3), 317-332.
https://doi.org/10.22103/jab.2024.24337.1627
Mukherjee, M., Blair, R. H., & Wang, Z. Q. (2022). Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production.
Metabolic Engineering, 74, 139–149.
https://doi.org/10.1016/j.ymben.2022.10.004
Nielsen, J., Larsson, C., van Maris, A., & Pronk, J. (2013). Metabolic engineering of yeast for production of fuels and chemicals.
Current Opinion in Biotechnology, 24(3), 398–404.
https://doi.org/10.1016/j.copbio.2013.03.023
Olano, C., Lombó, F., Méndez, C., & Salas, J. A. (2008). Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering.
Metabolic Engineering, 10(5), 281–292.
https://doi.org/10.1016/j.ymben.2008.07.001
Pereira, R., Nielsen, J., & Rocha, I. (2016). Improving the flux distributions simulated with genome-scale metabolic models of
Saccharomyces cerevisiae.
Metabolic Engineering Communications, 3, 153–163.
https://doi.org/10.1016/j.meteno.2016.05.002
Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F., & Kroemer, G. (2015). Acetyl coenzyme A: A central metabolite and second messenger.
Cell Metabolism, 21(6), 805–821.
https://doi.org/10.1016/j.cmet.2015.05.014
Ranganathan, S., Suthers, P. F., & Maranas, C. D. (2010). OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions.
PLoS Computational Biology, 6(4), e1000744.
https://doi.org/10.1371/journal.pcbi.1000744
Rangel, A. T., Gomez Ramirez, J. M., Gonzalez Barrios, A. F.(2020) From industrial by‐products to value‐added compounds: the design of efficient microbial cell factories by coupling systems metabolic engineering and bioprocesses.
Biofuels, Bioproducts and Biorefining, 14(6) 1228–1238.
https://doi.org/10.1002/bbb.2127
Safaei, S. M. H., Dadpasand, M., Mohammadabadi, M., Atashi, H., Stavetska, R., Klopenko, N., & Kalashnyk, O. (2022). An
Origanum majorana leaf diet influences
Myogenin gene expression, performance, and carcass characteristics in lambs.
Animals (Basel), 13(1), 14.
https://doi.org/10.3390/ani13010014
da Silva, T. L., Gouveia, L., & Reis, A. (2014). Integrated microbial processes for biofuels and high value-added products: The way to improve the cost effectiveness of biofuel production.
Applied Microbiology and Biotechnology, 98(3), 1043–1053.
https://doi.org/10.1007/s00253-013-5389-5
Tomm, H. A., Ucciferri, L., & Ross, A. C. (2019). Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production.
Journal of Industrial Microbiology & Biotechnology, 46(9-10), 1381–1400.
https://doi.org/10.1007/s10295-019-02198-y
Westover, J. B., Goodman, S. I., & Frerman, F. E. (2001). Binding, hydration, and decarboxylation of the reaction intermediate glutaconyl-coenzyme A by human glutaryl-CoA dehydrogenase.
Biochemistry, 40(46), 14106–14114.
https://doi.org/10.1021/bi015637p
Williams, R. B., Henrikson, J. C., Hoover, A. R., Lee, A. E., & Cichewicz, R. H. (2008). Epigenetic remodeling of the fungal secondary metabolome.
Organic & Biomolecular Chemistry, 6(11), 1895–1897.
https://doi.org/10.1039/b804701d
Xue, M., Hou, X., Fu, J., Zhang, J., Wang, J., Zhao, Z., Xu, D., Lai, D., & Zhou, L. (2023). Recent advances in search of bioactive secondary metabolites from fungi triggered by chemical epigenetic modifiers.
Journal of Fungi (Basel, Switzerland), 9(2), 172.
https://doi.org/10.3390/jof9020172
Yang, B. C., Lee, M. S., Lin, M. K., & Chang, W. T. (2022). 5-Azacytidine increases tanshinone production in Salvia miltiorrhiza hairy roots through epigenetic modulation.
Scientific Reports, 12(1), 9349.
https://doi.org/10.1038/s41598-022-12577-8
Zhang, L., Liu, C., Jiang, Q., & Yin, Y. (2021). Butyrate in energy metabolism: There is still more to learn.
Trends in endocrinology and metabolism: TEM, 32(3), 159–169.
https://doi.org/10.1016/j.tem.2020.12.003