Evaluation of morphological traits and nitrate reductase gene expression involved in nitrogen metabolism in bread wheat roots

Document Type : Research Paper

Authors

1 M.S. Student, Department of Biotechnology and Plant Breeding, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Professor, Department of Biotechnology and Plant Breeding, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Associate Professor, Department of Biotechnology and Plant Breeding, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

10.22103/jab.2025.23210.1561

Abstract

Objective: Since Iran is located in a dry and semi-arid region, the amount of organic matter in its soils is low and as a result, they have low levels of nitrogen. Most of the plants in these areas are deficient in nitrogen, and for this reason, it is necessary to provide nitrogen through chemical and organic fertilizers. Therefore, in this research, the effects of urea fertilizer regime on the differential expression of nitrate reductase gene and morphological traits in two wheat genotypes were investigated. Was placed.
Materials and methods: A factorial experiment was conducted in the form of a randomized complete block design with four replications in the research farm of Alou University of Agriculture and Natural Resources, Gorgan. The experimental treatments included the factorial combination of two wheat genotypes (Morvarid number and N8019 line) and two different urea regimes (150 kg per hectare, divided by 50 kg at the time of planting, 100 kg at the stem stage and control (without fertilizer). Root tissues were collected three times including one day and seven days after fertilizer application and at the stage of physiological maturity.Nitrate reductase gene expression was measured using QRT-PCR technique.
Results: Examining the effect of urea fertilizer on stem length, spike length, number of spikes and number of seeds in a spike showed that urea fertilizer had a significant effect on all these traits so that the said traits increased with the fertilizer treatment. In this study, the expression of the nitrate reductase gene in the pearl variety treated with urea fertilizer compared to the control (without urea fertilizer) increased in all three stages of sampling, so that the highest increase was in the first stage of sampling (one day after vinegar fertilizer). had the But in N8019 line, the expression of nitrate reductase gene increased in the first sampling stage and decreased in the next stages.
Conclusion: The results showed that there is a significant difference in gene expression with the use of urea in two genotypes. The use of urea has improved all agricultural traits except seed weight. The increase in seed yield was due to the higher number of seeds per spike. With the passage of time, in the next stages of sampling, the amount of nitrate inside the plant increases

Keywords


Bänziger, M., Feil, B., & Stamp, P. (1994). Competition between nitrogen accumulation and grain growth for carbohydrates during grain filling of wheat. Crop science34(2), 440-446.‏ https://doi.org/10.2135/cropsci1994.0011183X003400020025x.
Barazandeh, A., Mohammadabadi, M. R., Ghaderi-Zefrehei, M., & Nezamabadipour, H. (2016a). Predicting CpG islands and their relationship with genomic feature in cattle by hidden markov model algorithm. Iranian Journal of Applied Animal Science6(3), 571-579. https://sanad.iau.ir/en/Article/1023987?FullText=FullText
Barazandeh, A., Mohammadabadi, M. R., Ghaderi-Zefrehei, M., & Nezamabadi-Pour, H. (2016b). Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features Original Paper. Czech Journal of Animal Science61(11).‏ https://doi.org/10.17221/78/2015-CJAS.
Behera, B. C., Singdevsachan, S. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2014). Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatalysis and Agricultural Biotechnology3(2), 97-110.‏ https://doi.org/10.1016/j.bcab.2013.09.008Get rights and content.
Bordbar, F., Mohammadabadi, M., Jensen, J., Xu, L., Li, J., & Zhang, L. (2022). Identification of candidate genes regulating carcass depth and hind leg circumference in simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing analyses. Animals12(9), 1103.  https://doi.org/10.3390/ani12091103.
‏Boswell, F. C., Meisinger, J. J., & Case, N. L. (1985). Production, marketing, and use of nitrogen fertilizers. Fertilizer technology and use, 229-292.‏ https://doi.org/10.2136/1985.fertilizertechnology.c7.
Bouguyon, É., Brun, F., Meynard, D., Kubeš, M., Pervent, M., Leran, S., ... & Gojon, A. (2015). Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1. 1. Nature plants1(3), 1-8.‏ https://doi.org/10.1038/nplants.2015.15
Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of molecular endocrinology25(2), 169-193.‏ https://doi.org/10.1677/jme.0.0250169.
Cassman, K. G., Bryant, D. C., Fulton, A. E., & Jackson, L. F. (1992). Nitrogen supply effects on partitioning of dry matter and nitrogen to grain of irrigated wheat. Crop science32(5), 1251-1258.‏ https://doi.org/10.2135/cropsci1992.0011183X003200050038x.
Chen, B. M., Wang, Z. H., Li, S. X., Wang, G. X., Song, H. X., & Wang, X. N. (2004). Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science167(3), 635-643. https://doi.org/10.1016/j.plantsci.2004.05.015.
Duan, J., Tian, H., & Gao, Y. (2016). Expression of nitrogen transporter genes in roots of winter wheat (Triticum aestivum L.) in response to soil drought with contrasting nitrogen supplies. Crop and Pasture Science67(2), 128-136.‏ https://doi.org/10.1071/CP15152.
Faure, J. D., Vincentz, M., Kronenberger, J., & Caboche, M. (1991). Co‐regulated expression of nitrate and nitrite reductases. The Plant Journal1(1), 107-113.‏ https://doi.org/10.1111/j.1365-313X.1991.00107.x.
Frederick, J. R., & Camberato, J. J. (1995). Water and nitrogen effects on winter wheat in the southeastern Coastal Plain: I. Grain yield and kernel traits. Agronomy Journal87(3), 521-526.‏ https://doi.org/10.2134/agronj1995.00021962008700030021x.
Galeeva, E. I., Trifonova, T. V., Ponomareva, A. A., Viktorova, L. V., & Minibayeva, F. V. (2012). Nitrate reductase from Triticum aestivum leaves: Regulation of activity and possible role in production of nitric oxide. Biochemistry (Moscow)77, 404-410.‏ https://doi.org/10.1134/S0006297912040128
Gerreidenbach, W.A., & Horst, W,J. ( 2002). Nitrate-uptake capacitity of different root zone of zea mays (L.) in vitro and situ. Plant and Soil ,196, 295-300. https://doi.org/10.1023/A:1004280225323
Glaab, J., & Kaiser, W. M. (1995). Inactivation of nitrate reductase involves NR-protein phosphorylation and subsequent ‘binding’of an inhibitor protein. Planta195, 514-518.‏ https://doi.org/10.1007/BF00195708
Hosseini, M., Saidi, A., Maali-Amiri, R., Abbasi, A., & Khosravi-Nejad, F. (2021). Developmental regulation and metabolic changes of RILs of crosses between spring and winter wheat during low temperature acclimation. Environmental and Experimental Botany182, 104299.‏ https://doi.org/10.1016/j.envexpbot.2020.104299.
Huber, J. L., Huber, S. C., Campbell, W. H., & Redinbaugh, M. G. (1992). Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Archives of Biochemistry and Biophysics296(1), 58-65. https://doi.org/10.1016/0003-9861(92)90544-7.
Jafari Ahmadabadi, S. A. A., Askari-Hemmat, H., Mohammadabadi, M., Asadi Fouzi, M., & Mansouri, M. (2023). The effect of Cannabis seed on DLK1 gene expression in heart tissue of Kermani lambs. Agricultural Biotechnology Journal15(1), 217-234.‏ https://doi.org/10.22103/jab.2023.21265.1471.
Ji, H., Xiao, L., Xia, Y., Song, H., Liu, B., Tang, L., ... & Liu, L. (2017). Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology243, 33-42.‏ https://doi.org/10.1016/j.agrformet.2017.04.016.
Karrou, M., & Maranville, J. W. (1994). Response of wheat cultivars to different soil nitrogen and moisture regimes: I. Dry matter partitioning and root growth. Journal of plant nutrition17(5), 729-744.‏ https://doi.org/10.1080/01904169409364763.
Khandani, S. , Mirfakhraee, R. G. , Mohammadi Nejad, G. and Sardouei-Nasab, S. (2024). Evaluation of genetic diversity and investigation of population structure using SNP markers under late spring cold stress in bread wheat (Triticum aestivum L). Agricultural Biotechnology Journal, 16(1), 19-44. https://doi.org/10.22103/jab.2023.21960.1501
LaBrie, S. T., & Crawford, N. M. (1994). A glycine to aspartic acid change in the MoCo domain of nitrate reductase reduces both activity and phosphorylation levels in Arabidopsis. Journal of Biological Chemistry269(20), 14497-14501.‏ https://doi.org/10.1016/S0021-9258(17)36650-4
Leleu, O., & Vuylsteker, C. (2004). Unusual regulatory nitrate reductase activity in cotyledons of Brassica napus seedlings: enhancement of nitrate reductase activity by ammonium supply. Journal of Experimental Botany55(398), 815-823.‏ https://doi.org/10.1093/jxb/erh088.
Medici, A., & Krouk, G. (2014). The primary nitrate response: a multifaceted signalling pathway. Journal of experimental botany65(19), 5567-5576.  https://doi.org/10.1093/jxb/eru245.                                                                                                                   
Millner, J. P., Aver, R. V., & Hardacre, A. K. (2005). The yield and nutritive value of maize hybrids grown for silage. New Zealand Journal of Agricultural Research48(1), 101-108.‏ https://doi.org/10.1080/00288233.2005.9513637.
Mohammadabadi, M., Golkar, A., Askari Hesni, M., & Khezri, A. (2023). The effect of fennel (Foeniculum vulgare) on insulin-like growth factor 1 gene expression in the rumen tissue of Kermani sheep. Agric Biotechnol J15(4), 239-256. https://doi.org/10.22103/jab.2023.22647.1530.
Mohammadinejad, F., Mohammadabadi, M., Roudbari, Z., & Sadkowski, T. (2022). Identification of key genes and biological pathways associated with skeletal muscle maturation and hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals12(24), 3471.‏ https://doi.org/10.3390/ani12243471.
 Moloudi, F., Navabpour, S., Soltanloo, H., Ramazanpour, S. S., & Sadeghipour, H. (2013). Catalase and Metallothionein genes expression analysis in wheat cultivars under drought stress condition. Journal of Plant Molecular Breeding1(2), 54-68.  https://doi.org/10.22058/jpmb.2013.3262.
‏Mosanaei, H., Ajamnorozi, H., Dadashi, M. R., Faraji, A., & Pessarakli, M. (2017). Improvement effect of nitrogen fertilizer and plant density on wheat (Triticum aestivum L.) seed deterioration and yield. Emirates Journal of Food and Agriculture29(11), 899-910.‏ https://doi.org/ 10.9755/ejfa.2017.v29.i11.1500.
Mosavian, S. N., Akbari, N., Eisvand, H. R., Ismaili, A., & Moshatati, A. (2020). Effect of different nitrogen and zinc levels on grain yield and yield components of wheat (Triticum aestivum L.) cv. Chamran under late season heat stress conditions in Ahvaz. Plant Physiology, 46, 25-44. ‏ http://cpj.ahvaz.iau.ir/article-1-1291-en.html
Navabpour, S., Yamchi, A., Bagherikia, S., & Kafi, H. (2020). Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiology and molecular biology of plants26, 793-802.‏ https://doi.org/10.1007/s12298-020-00777-3.
Noori, M., Sobhkhizi, A., Adibian, M., Keykha, M., & Rigi, K. (2014). Effects of mycorrhiza and nitrogen fertilizer on dry weight, protein percent, harvest index, grain yield in wheat.‏ International Journal of Plant, Animal and Environmental Sciences 4(2), 155-159. https://www.fortunejournals.com/ijpaes/volume-4-issue-2.php
O'Brien, J. A., Vega, A., Bouguyon, E., Krouk, G., Gojon, A., Coruzzi, G., & Gutiérrez, R. A. (2016). Nitrate transport, sensing, and responses in plants. Molecular plant9(6), 837-856.‏ http://dx.doi.org/10.1016/j.molp.2016.05.004.
Reda, M., Migocka, M., & Kłobus, G. (2011). Effect of short-term salinity on the nitrate reductase activity in cucumber roots. Plant Science180(6), 783-788.‏ https://doi.org/10.1016/j.plantsci.2011.02.006.
Safaei, S. M. H., Dadpasand, M., Mohammadabadi, M., Atashi, H., Stavetska, R., Klopenko, N., & Kalashnyk, O. (2022). An origanum majorana leaf diet influences myogenin gene expression, performance, and carcass characteristics in lambs. Animals13(1), 14.‏ https://doi.org/10.3390/ani13010014.
Shahsavari, M., Mohammadabadi, M., Khezri, A., Asadi Fozi, M., Babenko, O., Kalashnyk, O., & Tkachenko, S. (2023). Correlation between insulin-like growth factor 1 gene expression and fennel (Foeniculum vulgare) seed powder consumption in muscle of sheep. Animal Biotechnology34(4), 882-892.‏ https://doi.org/10.1080/10495398.2021.2000997.
Shahsavari, M., Mohammadabadi, M., Khezri, A., Borshch, O., Babenko, O., Kalashnyk, O., ... & Kondratiuk, V. (2022). Effect of fennel (Foeniculum vulgare) seed powder consumption on insulin-like growth factor 1 gene expression in the liver tissue of growing lambs. Gene Expression21(2), 21-26. https://doi.org/10.14218/GE.2022.00017.
Shokri, S., Khezri, A., Mohammadabadi, M., & Kheyrodin, H. (2023). The expression of MYH7 gene in femur, humeral muscle and back muscle tissues of fattening lambs of the Kermani breed.‏ https://doi.org/10.22103/jab.2023.21524.1486.
Sopher, C. R., Król, M., Huner, N. P., Moore, A. E., & Fletcher, R. A. (1999). Chloroplastic changes associated with paclobutrazol-induced stress protection in maize seedlings. Canadian Journal of Botany77(2), 279-290.‏ https://doi.org/10.1139/b98-236.
Vidal, E. A., Araus, V., Lu, C., Parry, G., Green, P. J., Coruzzi, G. M., & Gutiérrez, R. A. (2010). Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proceedings of the National Academy of Sciences107(9), 4477-4482.‏ https://doi.org/10.1073/pnas.0909571107.
Yang, X. Y., Wang X. F, Wei, M., Yang F. J., & Shi Q. H. (2010). Changes of nitrate reductase activity in cucumber seedlings in response to nitrate stress. Agricultural Sciences in China, 9(2), 216-222.‏ https://doi.org/10.1016/S1671-2927(09)60086-9