Optimizing purification and refolding conditions for the recombinant EcoRI restriction endonuclease protein in E. coli

Document Type : Research Paper

Authors

1 Assistant Professor, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.

2 Ph.D. Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.

3 Professor, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.

10.22103/jab.2025.24329.1626

Abstract

Objective: Type II restriction endonucleases are the most common type of restriction enzymes, widely used in genetic engineering, particularly in gene cloning. Among these enzymes, the EcoRI enzyme is one of the most frequently utilized in the molecular field. The conventional method for producing these enzymes involves using genetically modified strains of Escherichia coli, which have been mutated to overproduce the EcoRI enzyme. However, the purification process for these enzymes is both costly and time-consuming, as it requires multiple chromatography columns. Given that the EcoRI enzyme has a simple structure without disulfide bridges and exists as a monomer, this study investigates the recombinant production, optimized purification, and refolding of this enzyme.
Material and methods: The EcoRI gene was isolated from the bacterium Escherichia coli (E. coli RY13) and cloned into the expression vector pET28 for recombinant expression in E. coli BL21 (DE3). The optimal conditions for protein expression were investigated, including the type of inducer,its concentration, and the temperature after induction. Protein expression was evaluated in terms of soluble protein or inclusion bodies using SDS-PAGE gel analysis. The recombinant protein was then purified and refolded using affinity chromatography and dialysis methods. Finally, the enzyme activity was compared to that of the commercial EcoRI enzyme from Thermo
Results: The optimal conditions for the expression of the EcoRI were determined to be 0.8 mM IPTG concentration and a temperature of 28°C. The results of the analysis of the recombinant protein expressed on SDS-PAGE gel indicated that the EcoRI was expressed as inclusion bodies. The solubilization of these inclusion bodies under mild conditions and refolding with 3 M urea demonstrated that the inclusion bodies were of a non-classical type. Furthermore, results from the refolding process, using both dialysis and Ni-NTA column, showed that the yield of refolding on the resin was higher than that obtained through dialysis. Enzymatic digestion reactions using the produced enzyme and a commercial enzyme indicated that the purified recombinant enzyme was capable of cutting plasmid DNA, similar to the commercial enzyme.
Conclusion: Refolding of inclusion bodies on the column resulted in significant time and cost savings, demonstrating greater efficiency compared to the dialysis method.

Keywords


Akiba, H., Tsumoto, K. (2016). Expression in Bacteria and Refolding. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56030-2_1
Al-Ayoubi, S. R., Schummel, P. H., Golub, M., Peters, J., & Winter, R. (2017). Influence of cosolvents, self-crowding, temperature and pressure on the sub-nanosecond dynamics and folding stability of lysozyme. Phys Chem Chem Phys, 19(22), 14230-14237. https://doi.org/10.1039/c7cp00705a
Belková, M., Koszagova, R., & Nahálka, J. (2022). Active inclusion bodies: The unexpected journey. Journal of microbiology, biotechnology and food sciences, 12(1), e5951-e5951. https://doi.org/10.55251/jmbfs.5951
Blount, Z. D. (2015). The unexhausted potential of E. coli. elife, 4, e05826. https://doi.org/10.7554/eLife.05826
Buckhout-White, S., Person, C., Medintz, I. L., & Goldman, E. R. (2018). Restriction enzymes as a target for DNA-based sensing and structural rearrangement. ACS omega, 3(1), 495-502. https://doi.org/10.1021/acsomega.7b01333
Burnett, M. J., & Burnett, A. C. (2020). Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants, People, Planet, 2(2), 121-132. https://doi.org/10.1002/ppp3.10073
de Marco, A., Ferrer-Miralles, N., Garcia-Fruitos, E., Mitraki, A., Peternel, S., Rinas, U., Trujillo-Roldan, M. A., Valdez-Cruz, N. A., Vazquez, E., & Villaverde, A. (2019). Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev, 43(1), 53-72. https://doi.org/10.1093/femsre/fuy038
Dyson, M. R., Shadbolt, S. P., Vincent, K. J., Perera, R. L., & McCafferty, J. (2004). Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC biotechnology, 4, 1-18. https://doi.org/10.1186/1472-6750-4-32
Faust, G., Stand, A., & Weuster‐Botz, D. (2015). IPTG can replace lactose in auto‐induction media to enhance protein expression in batch‐cultured Escherichia coli. Engineering in Life Sciences, 15(8), 824-829. https://doi.org/10.1002/elsc.201500011
Gholami, S., Goodarzvand Chegini, K., Gheibi, N., Mokhtarian, K., Mohamadi, M., & Falak, R. (2017). Cloning, expression, and spectral analysis of mouse betatrophin. Med J Islam Repub Iran, 31, 102. https://doi.org/10.14196/mjiri.31.102
Goppelt, M., Pingoud, A., Maass, G., Mayer, H., Koster, H., & Frank, R. (1980). The interaction of the EcoRI restriction endonuclease with its substrate. A physico-chemical study employing natural and synthetic oligonucleotides and polynucleotides. Eur J Biochem, 104(1), 101-107. https://doi.org/10.1111/j.1432-1033.1980.tb04405.x
Hannig, G., & Makrides, S. C. (1998). Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol, 16(2), 54-60. https://doi.org/10.1016/s0167-7799(97)01155-4
Huang, C. J., Lin, H., & Yang, X. (2012). Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol, 39(3), 383-399. https://doi.org/10.1007/s10295-011-1082-9
Idalia, V.-M. N., & Bernardo, F. (2017). Escherichia coli as a model organism and its application in biotechnology. Recent Adv. Physiol. Pathog. Biotechnol. Appl. Tech Open Rij. Croat, 13, 253-274. https://doi.org/10.5772/67306
Jungbauer, A., Kaar, W., & Schlegl, R. (2004). Folding and refolding of proteins in chromatographic beds. Curr Opin Biotechnol, 15(5), 487-494. https://doi.org/10.1016/j.copbio.2004.08.009
Kachhawaha, K., Singh, S., Joshi, K., Nain, P., & Singh, S. K. (2023). Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: insights from structure-function relationship for novel applications. Prep Biochem Biotechnol, 53(7), 728-752. https://doi.org/10.1080/10826068.2022.2155835
 Katalani, C., Nematzadeh, G., Ahmadian, G., Amani, J., Kiani, G., & Ehsani, P. (2020). In silico design and in vitro analysis of a recombinant trivalent fusion protein candidate vaccine targeting virulence factor of Clostridium perfringens. Int J Biol Macromol, 146, 1015-1023. https://doi.org/10.1016/j.ijbiomac.2019.09.227
Kato, A., & Ohashi, H. (2021). Quick refolding of high-concentration proteins via microchannel dialysis. Industrial & Engineering Chemistry Research, 60(28), 10076-10082. https://doi.org/10.1021/acs.iecr.1c00410
Kaur, J., Singh, A., Panda, A. K., & Lal, R. (2021). Protocol for in-vitro purification and refolding of hexachlorocyclohexane degrading enzyme haloalkane dehalogenase LinB from inclusion bodies. Enzyme Microb Technol, 146, 109760. https://doi.org/10.1016/j.enzmictec.2021.109760
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. https://doi.org/10.1038/227680a0
Larentis, A. L., Argondizzo, A. P., Esteves Gdos, S., Jessouron, E., Galler, R., & Medeiros, M. A. (2011). Cloning and optimization of induction conditions for mature PsaA (pneumococcal surface adhesin A) expression in Escherichia coli and recombinant protein stability during long-term storage. Protein Expr Purif, 78(1), 38-47. https://doi.org/10.1016/j.pep.2011.02.013
Larentis, A. L., Nicolau, J. F. M. Q., Esteves, G. d. S., Vareschini, D. T., de Almeida, F. V. R., dos Reis, M. G., Galler, R., & Medeiros, M. A. (2014). Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC research notes, 7, 1-13.https://doi.org/10.1186/1756-0500-7-671
Liu, W., Chen, Y., Watrob, H., Bartlett, S. G., Jen-Jacobson, L., & Barkley, M. D. (1998). N-Termini of Eco RI Restriction Endonuclease Dimer Are in Close Proximity on the Protein Surface. Biochemistry, 37(44), 15457-15465. https://doi.org/10.1021/bi980557f
Loenen, W. A., Dryden, D. T., Raleigh, E. A., Wilson, G. G., & Murray, N. E. (2014). Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res, 42(1), 3-19. https://doi.org/10.1093/nar/gkt990
Lozano Terol, G., Gallego-Jara, J., Sola Martinez, R. A., Martinez Vivancos, A., Canovas Diaz, M., & de Diego Puente, T. (2021). Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Front Microbiol, 12, 682001. https://doi.org/10.3389/fmicb.2021.682001
McCarty, N. S., & Ledesma-Amaro, R. (2019). Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology. Trends Biotechnol, 37(2), 181-197. https://doi.org/10.1016/j.tibtech.2018.11.002
Oganesyan, N., Kim, S.-H., & Kim, R. (2005). SOn-column protein refolding for crystallization. Journal of structural and functional genomics, 6, 177-182. https://doi.org/10.1007/s10969-005-2827-3
Papaneophytou, C. P., & Kontopidis, G. A. (2012). Optimization of TNF-alpha overexpression in Escherichia coli using response surface methodology: Purification of the protein and oligomerization studies. Protein Expr Purif, 86(1), 35-44. https://doi.org/10.1016/j.pep.2012.09.002
Peternel, S., & Komel, R. (2011). Active protein aggregates produced in Escherichia coli. Int J Mol Sci, 12(11), 8275-8287. https://doi.org/10.3390/ijms12118275
Pingoud, A., Wilson, G. G., & Wende, W. (2014). Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res, 42(12), 7489-7527.  https://doi.org/10.1093/nar/gku447
Pollastri, G., & McLysaght, A. (2005). Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics, 21(8), 1719-1720. https://doi.org/10.1093/bioinformatics/bti203
Qing, R., Hao, S., Smorodina, E., Jin, D., Zalevsky, A., & Zhang, S. (2022). Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev, 122(18), 14085-14179. https://doi.org/10.1021/acs.chemrev.1c00757
Sambrook, J. (1989). Molecular cloning: a laboratory manual. Cold Spring Habor Laboratory.
Sanchez-Garcia, L., Martin, L., Mangues, R., Ferrer-Miralles, N., Vazquez, E., & Villaverde, A. (2016). Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact, 15, 33. https://doi.org/10.1186/s12934-016-0437-3
Schildkraut, I. (1984). Screening for and characterizing restriction endonucleases. In Genetic engineering: principles and methods (pp. 117-140). Springer.
Schramm, F. D., Schroeder, K., & Jonas, K. (2020). Protein aggregation in bacteria. FEMS Microbiol Rev, 44(1), 54-72. https://doi.org/10.1093/femsre/fuz026
Sen, S., & Nilsson, L. (1999). Structure, interaction, dynamics and solvent effects on the DNA-EcoRI complex in aqueous solution from molecular dynamics simulation. Biophys J, 77(4), 1782-1800. https://doi.org/10.1016/S0006-3495(99)77024-4
Singh, A., Upadhyay, V., & Panda, A. K. (2015). Solubilization and refolding of inclusion body proteins. Methods Mol Biol, 1258, 283-291. https://doi.org/10.1007/978-1-4939-2205-5_15
Singh, A., Upadhyay, V., Singh, A., & Panda, A. K. (2020). Structure-Function Relationship of Inclusion Bodies of a Multimeric Protein. Front Microbiol, 11, 876. https://doi.org/10.3389/fmicb.2020.00876
Singhvi, P., & Panda, A. K. (2022). Solubilization and refolding of inclusion body proteins. In Insoluble proteins: methods and protocols (doi:10.1007/978-1-0716-1859-2_22pp. 371-387). Springer. https://doi.org/doi:10.1007/978-1-0716-1859-2_22
Singhvi, P., Saneja, A., Srichandan, S., & Panda, A. K. (2020). Bacterial Inclusion Bodies: A Treasure Trove of Bioactive Proteins. Trends Biotechnol, 38(5), 474-486. https://doi.org/10.1016/j.tibtech.2019.12.011
Trinh, N. T. M., Thuoc, T. L., & Thao, D. T. P. (2021). Production of PEGylated GCSF from Non-classical Inclusion Bodies Expressed in Escherichia coli. Avicenna J Med Biotechnol, 13(4), 192-200. https://doi.org/10.18502/ajmb.v13i4.7204
Ventura, S., & Villaverde, A. (2006). Protein quality in bacterial inclusion bodies. Trends Biotechnol, 24(4), 179-185. https://doi.org/10.1016/j.tibtech.2006.02.007
Yamaguchi, H., & Miyazaki, M. (2014). Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules, 4(1), 235-251. https://doi.org/10.3390/biom4010235