Akiba, H., Tsumoto, K. (2016). Expression in Bacteria and Refolding. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo.
https://doi.org/10.1007/978-4-431-56030-2_1
Al-Ayoubi, S. R., Schummel, P. H., Golub, M., Peters, J., & Winter, R. (2017). Influence of cosolvents, self-crowding, temperature and pressure on the sub-nanosecond dynamics and folding stability of lysozyme. Phys Chem Chem Phys, 19(22), 14230-14237.
https://doi.org/10.1039/c7cp00705a
Belková, M., Koszagova, R., & Nahálka, J. (2022). Active inclusion bodies: The unexpected journey.
Journal of microbiology, biotechnology and food sciences,
12(1), e5951-e5951.
https://doi.org/10.55251/jmbfs.5951
Buckhout-White, S., Person, C., Medintz, I. L., & Goldman, E. R. (2018). Restriction enzymes as a target for DNA-based sensing and structural rearrangement.
ACS omega,
3(1), 495-502.
https://doi.org/10.1021/acsomega.7b01333
Burnett, M. J., & Burnett, A. C. (2020). Therapeutic recombinant protein production in plants: Challenges and opportunities.
Plants, People, Planet,
2(2), 121-132.
https://doi.org/10.1002/ppp3.10073
de Marco, A., Ferrer-Miralles, N., Garcia-Fruitos, E., Mitraki, A., Peternel, S., Rinas, U., Trujillo-Roldan, M. A., Valdez-Cruz, N. A., Vazquez, E., & Villaverde, A. (2019). Bacterial inclusion bodies are industrially exploitable amyloids.
FEMS Microbiol Rev,
43(1), 53-72.
https://doi.org/10.1093/femsre/fuy038
Dyson, M. R., Shadbolt, S. P., Vincent, K. J., Perera, R. L., & McCafferty, J. (2004). Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression.
BMC biotechnology,
4, 1-18.
https://doi.org/10.1186/1472-6750-4-32
Faust, G., Stand, A., & Weuster‐Botz, D. (2015). IPTG can replace lactose in auto‐induction media to enhance protein expression in batch‐cultured Escherichia coli.
Engineering in Life Sciences,
15(8), 824-829.
https://doi.org/10.1002/elsc.201500011
Gholami, S., Goodarzvand Chegini, K., Gheibi, N., Mokhtarian, K., Mohamadi, M., & Falak, R. (2017). Cloning, expression, and spectral analysis of mouse betatrophin.
Med J Islam Repub Iran,
31, 102.
https://doi.org/10.14196/mjiri.31.102
Goppelt, M., Pingoud, A., Maass, G., Mayer, H., Koster, H., & Frank, R. (1980). The interaction of the EcoRI restriction endonuclease with its substrate. A physico-chemical study employing natural and synthetic oligonucleotides and polynucleotides.
Eur J Biochem,
104(1), 101-107.
https://doi.org/10.1111/j.1432-1033.1980.tb04405.x
Huang, C. J., Lin, H., & Yang, X. (2012). Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements.
J Ind Microbiol Biotechnol,
39(3), 383-399.
https://doi.org/10.1007/s10295-011-1082-9
Idalia, V.-M. N., & Bernardo, F. (2017). Escherichia coli as a model organism and its application in biotechnology.
Recent Adv. Physiol. Pathog. Biotechnol. Appl. Tech Open Rij. Croat,
13, 253-274.
https://doi.org/10.5772/67306
Kachhawaha, K., Singh, S., Joshi, K., Nain, P., & Singh, S. K. (2023). Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: insights from structure-function relationship for novel applications.
Prep Biochem Biotechnol,
53(7), 728-752.
https://doi.org/10.1080/10826068.2022.2155835
Katalani, C., Nematzadeh, G., Ahmadian, G., Amani, J., Kiani, G., & Ehsani, P. (2020). In silico design and in vitro analysis of a recombinant trivalent fusion protein candidate vaccine targeting virulence factor of Clostridium perfringens.
Int J Biol Macromol,
146, 1015-1023.
https://doi.org/10.1016/j.ijbiomac.2019.09.227
Kato, A., & Ohashi, H. (2021). Quick refolding of high-concentration proteins via microchannel dialysis.
Industrial & Engineering Chemistry Research,
60(28), 10076-10082.
https://doi.org/10.1021/acs.iecr.1c00410
Kaur, J., Singh, A., Panda, A. K., & Lal, R. (2021). Protocol for in-vitro purification and refolding of hexachlorocyclohexane degrading enzyme haloalkane dehalogenase LinB from inclusion bodies.
Enzyme Microb Technol,
146, 109760.
https://doi.org/10.1016/j.enzmictec.2021.109760
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature,
227(5259), 680-685.
https://doi.org/10.1038/227680a0
Larentis, A. L., Argondizzo, A. P., Esteves Gdos, S., Jessouron, E., Galler, R., & Medeiros, M. A. (2011). Cloning and optimization of induction conditions for mature PsaA (pneumococcal surface adhesin A) expression in Escherichia coli and recombinant protein stability during long-term storage.
Protein Expr Purif,
78(1), 38-47.
https://doi.org/10.1016/j.pep.2011.02.013
Larentis, A. L., Nicolau, J. F. M. Q., Esteves, G. d. S., Vareschini, D. T., de Almeida, F. V. R., dos Reis, M. G., Galler, R., & Medeiros, M. A. (2014). Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor.
BMC research notes,
7, 1-13.
https://doi.org/10.1186/1756-0500-7-671
Liu, W., Chen, Y., Watrob, H., Bartlett, S. G., Jen-Jacobson, L., & Barkley, M. D. (1998). N-Termini of Eco RI Restriction Endonuclease Dimer Are in Close Proximity on the Protein Surface.
Biochemistry,
37(44), 15457-15465.
https://doi.org/10.1021/bi980557f
Loenen, W. A., Dryden, D. T., Raleigh, E. A., Wilson, G. G., & Murray, N. E. (2014). Highlights of the DNA cutters: a short history of the restriction enzymes.
Nucleic Acids Res,
42(1), 3-19.
https://doi.org/10.1093/nar/gkt990
Lozano Terol, G., Gallego-Jara, J., Sola Martinez, R. A., Martinez Vivancos, A., Canovas Diaz, M., & de Diego Puente, T. (2021). Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21.
Front Microbiol,
12, 682001.
https://doi.org/10.3389/fmicb.2021.682001
Papaneophytou, C. P., & Kontopidis, G. A. (2012). Optimization of TNF-alpha overexpression in Escherichia coli using response surface methodology: Purification of the protein and oligomerization studies.
Protein Expr Purif,
86(1), 35-44.
https://doi.org/10.1016/j.pep.2012.09.002
Pingoud, A., Wilson, G. G., & Wende, W. (2014). Type II restriction endonucleases--a historical perspective and more.
Nucleic Acids Res,
42(12), 7489-7527.
https://doi.org/10.1093/nar/gku447
Qing, R., Hao, S., Smorodina, E., Jin, D., Zalevsky, A., & Zhang, S. (2022). Protein Design: From the Aspect of Water Solubility and Stability.
Chem Rev,
122(18), 14085-14179.
https://doi.org/10.1021/acs.chemrev.1c00757
Sambrook, J. (1989). Molecular cloning: a laboratory manual. Cold Spring Habor Laboratory.
Sanchez-Garcia, L., Martin, L., Mangues, R., Ferrer-Miralles, N., Vazquez, E., & Villaverde, A. (2016). Recombinant pharmaceuticals from microbial cells: a 2015 update.
Microb Cell Fact,
15, 33.
https://doi.org/10.1186/s12934-016-0437-3
Schildkraut, I. (1984). Screening for and characterizing restriction endonucleases. In Genetic engineering: principles and methods (pp. 117-140). Springer.
Sen, S., & Nilsson, L. (1999). Structure, interaction, dynamics and solvent effects on the DNA-EcoRI complex in aqueous solution from molecular dynamics simulation.
Biophys J,
77(4), 1782-1800.
https://doi.org/10.1016/S0006-3495(99)77024-4
Singh, A., Upadhyay, V., Singh, A., & Panda, A. K. (2020). Structure-Function Relationship of Inclusion Bodies of a Multimeric Protein.
Front Microbiol,
11, 876.
https://doi.org/10.3389/fmicb.2020.00876
Singhvi, P., & Panda, A. K. (2022). Solubilization and refolding of inclusion body proteins. In
Insoluble proteins: methods and protocols (doi:10.1007/978-1-0716-1859-2_22pp. 371-387). Springer.
https://doi.org/doi:10.1007/978-1-0716-1859-2_22
Trinh, N. T. M., Thuoc, T. L., & Thao, D. T. P. (2021). Production of PEGylated GCSF from Non-classical Inclusion Bodies Expressed in Escherichia coli.
Avicenna J Med Biotechnol,
13(4), 192-200.
https://doi.org/10.18502/ajmb.v13i4.7204
Yamaguchi, H., & Miyazaki, M. (2014). Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.
Biomolecules,
4(1), 235-251.
https://doi.org/10.3390/biom4010235