Protective effect of ethanolic extract of galangal root against cadmium-induced neurotoxicity in a rat model

Document Type : Research Paper

Authors

1 Department of animal production Technologies, College of agricultural Technique , Northern Technical University, Mosul, Iraq

2 Department of Pharmacy Technique , Northern Technical University, Mosul, Iraq

3 Department of physiology, biochemistry and pharmacology, Veterinary Medicine College, University of Mosul, Mosul, Iraq

10.22103/jab.2025.24986.1680

Abstract

Objective
Cadmium is a toxic heavy metal with detrimental effects on various biological systems. Herbal extracts, due to their antioxidant properties, may help mitigate such toxicity. This study aimed to evaluate the protective effect of Alpinia galanga (galangal) root ethanolic extract against cadmium-induced neurotoxicity in a rat model.
Materials and Methods
Forty male rats were randomly assigned to four groups (n = 10 per group). Group 1 (control) received normal drinking water and diet for 30 days. Group 2 was administered 100 mg/kg of A. galanga hydroalcoholic extract orally. Group 3 received 0.5 ppm cadmium chloride (CdCl₂) in drinking water. Group 4 received both 0.5 ppm CdCl₂ in water and 100 mg/kg A. galanga extract orally for 30 days.
Results
Cadmium exposure significantly increased brain malondialdehyde (MDA) levels (1.6364 ± 0.01) compared to the control group (0.7247 ± 0.005, p = 0.001), while MDA levels in the A. galanga-treated rats were comparable to controls. Glutathione peroxidase (GSH-Px) levels were significantly reduced in the cadmium group (10.5098 ± 1.5) and the cadmium + extract group (15.9569 ± 1.5) compared to controls (p = 0.023). Gene expression analysis showed a significant downregulation of catalase in the cadmium (0.74 ± 0.2) and cadmium + extract (0.83 ± 0.19) groups relative to the control (1.05 ± 0.25) and extract-only (0.94 ± 0.21) groups (p < 0.05). Glutathione S-transferase (GST) expression was also significantly reduced in the cadmium group (1.05 ± 0.05) compared to the control (1.94 ± 0.1), but co-administration with A. galanga restored GST levels (1.47 ± 0.09, p < 0.05). A similar trend was observed for GSH-Px expression, which decreased significantly in the cadmium group (0.97 ± 0.05) and improved with A. galanga treatment (1.34 ± 0.12) compared to the control (2.19 ± 0.15, p < 0.05).
Conclusions
These findings demonstrate that cadmium exerts neurotoxic effects through oxidative stress mechanisms, and that Alpinia galanga root extract possesses significant antioxidant properties capable of mitigating cadmium-induced neurotoxicity in rats.

Keywords


Abd Rahman, I. Z., Adam, S. H., Hamid, A. A., Mokhtar, M. H., Mustafar, R., Kashim, M. I. A. M., Febriza, A., & Mansor, N. I. (2024). Potential Neuroprotective Effects of Alpinia officinarum Hance (Galangal): A Review. Nutrients, 16(19). https://doi.org/10.3390/nu16193378
Afifi, O., & Embaby, A. (2016). Histological Study on the Protective Role of Ascorbic Acid on Cadmium-Induced Cerebral Cortical Neurotoxicity in Adult Male Albino Rats. Journal of Microscopy and Ultrastructure, 4(1), 36. https://doi.org/10.1016/J.JMAU.2015.10.001
Al-Hashem, F. H., Bashir, S. O., Dawood, A. F., Aboonq, M. S., Bin-Jaliah, I., Al-Garni, A. M., & Morsy, M. D. (2024). Vanillylacetone attenuates cadmium chloride-induced hippocampal damage and memory loss through the upregulation of nuclear factor erythroid 2-related factor 2 gene and protein expression. Neural Regeneration Research, 19(12), 2750–2759. https://doi.org/10.4103/1673-5374.391300
Aziz, I. M., Alfuraydi, A. A., Almarfadi, O. M., Aboul-Soud, M. A. M., Alshememry, A. K., Alsaleh, A. N., & Almajhdi, F. N. (2024). Phytochemical analysis, antioxidant, anticancer, and antibacterial potential of Alpinia galanga (L.) rhizome. Heliyon, 10(17), e37196. https://doi.org/10.1016/J.HELIYON.2024.E37196
Branca, J. J. V., Fiorillo, C., Carrino, D., Paternostro, F., Taddei, N., Gulisano, M., Pacini, A., & Becatti, M. (2020). Cadmium-induced oxidative stress: Focus on the central nervous system. Antioxidants, 9(6), 1–21. https://doi.org/10.3390/antiox9060492
Dodelet-Devillers, A., Zullian, C., Beaudry, F., Gourdon, J., Chevrette, J., Hélie, P., & Vachon, P. (2016). Physiological and pharmacokinetic effects of multilevel caging on Sprague          Dawley rats under ketamine-xylazine anaesthesia. Experimental Animals, 65(4), 383–392. https://doi.org/10.1538/EXPANIM.16-0026
El-kott, A. F., Abd-Lateif, A. E. K. M., Khalifa, H. S., Morsy, K., Ibrahim, E. H., Bin-Jumah, M., Abdel-Daim, M. M., & Aleya, L. (2020). Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Science of The Total Environment, 728, 138832. https://doi.org/10.1016/J.SCITOTENV.2020.138832
El-Tarras, A. E. S., Attia, H. F., Soliman, M. M., El Awady, M. A., & Amin, A. A. (2016). Neuroprotective effect of grape seed extract against cadmium toxicity in male albino rats. International Journal of Immunopathology and Pharmacology, 29(3), 398–407. https://doi.org/10.1177/0394632016651447
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782
Hazrat, A., Ezzat, K., & Ilahi Ikram. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019(Cd), 1–14. https://doi.org/10.1155/2019/6730305
Hung, N. H., Quan, P. M., Satyal, P., Dai, D. N., Hoa, V. V., Huy, N. G., Giang, L. D., Ha, N. T., Huong, L. T., Hien, V. T., & Setzer, W. N. (2022). Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules, 27(20), 7092. https://doi.org/10.3390/molecules27207092
Juntachote, T., & Berghofer, E. (2005). Antioxidative properties and stability of ethanolic extracts of Holy basil and Galangal. Food Chemistry, 92(2), 193–202. https://doi.org/10.1016/J.FOODCHEM.2004.04.044
Kapil, L., Kumar, V., Kaur, S., Sharma, D., Singh, C., & Singh, A. (2024). Role of Autophagy and Mitophagy in Neurodegenerative Disorders. CNS & Neurological Disorders - Drug Targets, 23(3), 367–383. https://doi.org/10.2174/1871527322666230327092855
Kojima-Yuasa, A., & Matsui-Yuasa, I. (2020). Pharmacological Effects of 1′-Acetoxychavicol Acetate, a Major Constituent in the Rhizomes of Alpinia galanga and Alpinia conchigera. Journal of Medicinal Food, 23(5), 465–475. https://doi.org/10.1089/JMF.2019.4490
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262
Mishra, J., Bhatti, G. K., Sehrawat, A., Singh, C., Singh, A., Reddy, A. P., Reddy, P. H., & Bhatti, J. S. (2022). Modulating autophagy and mitophagy as a promising therapeutic approach in neurodegenerative disorders. Life Sciences, 311, 121153. https://doi.org/10.1016/J.LFS.2022.121153
Mustafa, W., & Alchalabi, A. S. (2022). Heat shock protein and antioxidant enzyme gene expression and fold changes in bone marrow samples from healthy rats. Journal of Education and Science, 31(3), 165–175. https://scispace.com/papers/heat-shock-protein-and-antioxidant-enzyme-gene-expression-2f0w38s4
Rahman, I. Z. A., & , Siti Hajar Adam , Adila A. Hamid , Mohd Helmy Mokhtar , Ruslinda Mustafar , Mohd Izhar Ariff Mohd Kashim, A. F. and N. I. M. (2024). Potential Neuroprotective Effects of Alpinia officinarum Hance (Galangal): A Review. Nutrients, 16(19), 3378. https://doi.org/10.3390/nu16193378
Rajendiran, V., Natarajan, V., & Devaraj, S. N. (2018). Anti-inflammatory activity of Alpinia officinarum hance on rat colon inflammation and tissue damage in DSS induced acute and chronic colitis models. Food Science and Human Wellness, 7(4), 273–281. https://doi.org/10.1016/J.FSHW.2018.10.004
Ranjan, N., Shweta, S., & Kumari, M. (2022). In vitro screening for Acetylcholinesterase Inhibition and Antioxidant activity of selected Medicinal Plants. International Journal of Agricultural and Applied Sciences, 3(2), 114–119. https://doi.org/10.52804/ijaas2022.3221
Rezaei, K., Mastali, G., Abbasgholinejad, E., Bafrani, M. A., Shahmohammadi, A., Sadri, Z., & Zahed, M. A. (2024). Cadmium neurotoxicity: Insights into behavioral effect and neurodegenerative diseases. Chemosphere, 364, 143180. https://doi.org/10.1016/J.CHEMOSPHERE.2024.143180
Satarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2010). Cadmium, environmental exposure, and health outcomes. Environmental Health Perspectives, 118(2), 182–190. https://doi.org/10.1289/EHP.0901234
Srivastava, S., Mennemeier, M., & Pimple, S. (2017). Effect of Alpinia galanga on Mental Alertness and Sustained Attention With or Without Caffeine: A Randomized Placebo-Controlled Study. Journal of the American College of Nutrition, 36(8), 631–639. https://doi.org/10.1080/07315724.2017.1342576
Thapa, R., Afzal, O., Alfawaz Altamimi, A. S., Goyal, A., Almalki, W. H., Alzarea, S. I., Kazmi, I., Jakhmola, V., Singh, S. K., Dua, K., Gilhotra, R., & Gupta, G. (2023). Galangin as an inflammatory response modulator: An updated overview and therapeutic potential. Chemico-Biological Interactions, 378, 110482. https://doi.org/10.1016/J.CBI.2023.110482
Tian, Y., Jia, X., Wang, Q., Lu, T., Deng, G., Tian, M., & Zhou, Y. (2022). Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia galanga Flower Essential Oil. Pharmaceuticals, 15(9). https://doi.org/10.3390/PH15091069
Unsal, V., Dalkiran, T., Çiçek, M., & Kölükçü, E. (2020). The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review. Advanced Pharmaceutical Bulletin, 10(2), 184. https://doi.org/10.34172/APB.2020.023
Van, H. T., Thang, T. D., Luu, T. N., & Doan, V. D. (2021). An overview of the chemical composition and biological activities of essential oils from Alpinia genus (Zingiberaceae). RSC Advances, 11(60), 37767–37783. https://doi.org/10.1039/D1RA07370B
Villalón-García, I., Povea-Cabello, S., Álvarez-Córdoba, M., Talaverón-Rey, M., Suárez-Rivero, J., Suárez-Carrillo, A., Munuera-Cabeza, M., Reche-López, D., Cilleros-Holgado, P., Piñero-Pérez, R., & Sánchez-Alcázar, J. (2023). Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regeneration Research, 18(6), 1196. https://doi.org/10.4103/1673-5374.358614
Wang, B., & Du, Y. (2013). Cadmium and its neurotoxic effects. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2013/898034
Yu, D.-R., Wang, T., Ji, L.-P., Fang, X.-Y., Y, X.-N., & Liu, Q.-B. (2016). Effects of galangal extract on cognitive dysfunction and nerve pathological change in rats with diabetic encephalopathy. Journal of Hainan Medical University, 22(17), 1–5. https://www.ingentaconnect.com/content/doaj/10071237/2016/00000022/00000017/art00001