Prevalence and antibiotic resistance patterns of coagulase-negative staphylococci isolated from hemodialysis patients

Document Type : Research Paper

Authors

1 Department of Biology, College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq.

2 Department of Medical and Basic Sciences, College of Nursing, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

10.22103/jab.2025.25294.1716

Abstract

Objective
Coagulase-negative staphylococci (CoNS) have emerged as meaningful nosocomial pathogens, exclusively in immunocompromised populations like hemodialysis patients, due to their biofilm-forming capabilities and multidrug resistance. This investigation aimed to identify the prevalence and antibiotic resistance patterns of CoNS extracted from hemodialysis patients to inform targeted infection control strategies.
Materials and methods
Venous blood samples were gathered from 100 hemodialysis patients at AL-Diwaniyah General Hospital applying sterile syringes. Samples were cultured on mannitol salt agar and blood agar to isolate bacterial colonies. Isolates underwent Gram staining to affirm purity, morphology, and Gram-positive status. Coagulase-negative staphylococci (CoNS) were identified via coagulase testing, and species were affirmed by PCR amplification of the 16S rRNA gene applying primers 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-TACGGYTACCTTGTTACGACTT-3'). Antibiotic susceptibility to amoxicillin, cefotaxime, ceftriaxone, gentamicin, levofloxacin, imipenem, meropenem, ciprofloxacin, and doxycycline was evaluateed applying the Kirby-Bauer disk diffusion method, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Inhibition zone diameters were measured after 24-hour incubation at 37°C and interpreted per manufacturer standards.
Results
Of 100 clinical specimens from hemodialysis patients, 54% (54/100) tested positive for coagulase-negative staphylococci (CoNS). Staphylococcus epidermidis was the most prevalent species, constituting 51.85% (28/54) of isolates, followed by Staphylococcus saprophyticus (20.37%, 11/54), Staphylococcus hominis (16.67%, 9/54), and Staphylococcus haemolyticus (11.11%, 6/54). All S. epidermidis isolates exhibited 100% resistance to amoxicillin, with high resistance rates to gentamicin (89.28%), ceftriaxone (78.57%), cefotaxime (71.42%), levofloxacin (75%), imipenem (50%), and meropenem (50%). S. saprophyticus isolates showed lower resistance, with 72.72% resistant to amoxicillin, 54.54% to cefotaxime and ceftriaxone, 81.81% to gentamicin, and 63.63% to levofloxacin. S. hominis and S. haemolyticus demonstrated variable resistance patterns, with 66.67%–88.89% and 50%–83.33% resistance, respectively, across the tested antibiotics. Multidrug resistance (resistance to ≥3 antibiotic classes) was observed in 64.81% (35/54) of CoNS isolates.
Conclusions
These results necessitate the implementation of robust infection control measures, containing enhanced catheter care protocols, regular surveillance of resistance patterns, and antimicrobial stewardship programs to optimize antibiotic apply. Additionally, the variable resistance profiles of S. hominis and S. haemolyticus suggest the need for species-specific therapeutic approaches. Future research should centralize on elucidating the molecular mechanisms of resistance and exploring alternative treatments, like novel antimicrobials or biofilm-disrupting agents, to mitigate the risk of CoNS-related infections in clinical settings.

Keywords


Ahsani, M. R., Mohammadabadi, M. R., & Shamsaddini, M. B. (2010). Clostridium perfringens isolate typing by multiplex PCR. Journal of Venomous Animals and Toxins Including Tropical Diseases, 16(4), 573–578. https://doi.org/10.1590/S1678-91992010000400006
Arif, M., Tahir, M., Jie, Z., & Changxiao, L. (2021). Impacts of riparian width and stream channel width on ecological networks in main waterways and tributaries. Science of the Total Environment, 792, 148457. https://doi.org/10.1016/j.scitotenv.2021.148457
Aslam, S., Vaida, F., Ritter, M., & Mehta, R. L. (2014). Systematic review and meta-analysis on management of hemodialysis catheter-related bacteremia. Journal of the American Society of Nephrology, 25(12), 2927–2941. https://doi.org/10.1681/ASN.2013091009
Baker, J. S. (1984). Comparison of numerous methods for differentiation of staphylococci and micrococci. Journal of Clinical Microbiology, 19(6), 875–879. https://doi.org/10.1128/jcm.19.6.875-879.1984
Barros, E. M., Ceotto, H., Bastos, M. C., Dos Santos, K. R., & Giambiagi-Demarval, M. (2012). Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. Journal of Clinical Microbiology, 50(1), 166–168. https://doi.org/10.1128/JCM.05563-11
Chu, V. H., Woods, C. W., Miro, J. M., Hoen, B., Cabell, C. H., Pappas, P. A., Federspiel, J., Athan, E., Stryjewski, M. E., Nacinovich, F., Marco, F., Levine, D. P., Elliott, T. S., Fortes, C. Q., Tornos, P., Gordon, D. L., Utili, R., Delahaye, F., Corey, G. R., Fowler, V. G., Jr., & International Collaboration on Endocarditis-Prospective Cohort Study Group. (2008). Emergence of coagulase-negative staphylococci as a cause of native valve endocarditis. Clinical Infectious Diseases, 46(2), 232–242. https://doi.org/10.1086/524666
Cuevas, O., Cercenado, E., Vindel, A., Guinea, J., Sánchez-Conde, M., Sánchez-Somolinos, M., & Bouza, E. (2004). Evolution of the antimicrobial resistance of Staphylococcus spp. in Spain: Five nationwide prevalence studies, 1986 to 2002. Antimicrobial Agents and Chemotherapy, 48(11), 4240–4245. https://doi.org/10.1128/AAC.48.11.4240-4245.2004
Cunha, M. L. R. S., Sinzato, Y. K., & Silveira, L. V. A. (2004). Comparison of methods for the identification of coagulase-negative staphylococci. Memórias do Instituto Oswaldo Cruz, 99(8), 855–860. https://doi.org/10.1590/s0074-02762004000800012
d’Azevedo, P. A., Secchi, C., Antunes, A. L., Sales, T., Silva, F. M., Tranchesi, R., & Pignatari, A. C. (2008). Oxacillin-resistant coagulase-negative staphylococci (CoNS) bacteremia in a general hospital at São Paulo city, Brasil. Brazilian Journal of Microbiology, 39(4), 631–635. https://doi.org/10.1590/S1517-83822008000400006
Daniel, B., Saleem, M., Naseer, G., & Fida, A. (2014). Significance of Staphylococcus haemolyticus in hospital acquired infections. Journal of Pioneer Medical Sciences, 4(3), 119–125. https://jpmsonline.com/article/jpms-volume-4-issue-3-pages119-125-ra/
Fiebelkorn, K. R., Crawford, S. A., McElmeel, M. L., & Jorgensen, J. H. (2003). Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. Journal of Clinical Microbiology, 41(10), 4740–4744. https://doi.org/10.1128/JCM.41.10.4740-4744.2003
Fredriksson, N. J., Hermansson, M., & Wilén, B.-M. (2013). The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS ONE, 8(10), Article e76431. https://doi.org/10.1371/journal.pone.0076431
Jiyad, D. H. (2023). Isolation and characterization of causative bacteria of catheter-related bloodstream infection and the role of interleukin-10 in chronic renal disease patients on hemodialysis [Master’s thesis, College of Applied Medical Sciences, University of Kerbala].
Kadeřábková, N., Mahmood, A.J.S. & Mavridou, D.A.I. Antibiotic susceptibility testing using minimum inhibitory concentration (MIC) assays. npj Antimicrob Resist 2, 37 (2024). https://doi.org/10.1038/s44259-024-00051-6
Kavitha, Y., & Shaik, K. M. (2014). Speciation and antibiogram of clinically significant coagulase negative staphylococci. International Journal of Health Sciences & Research, 4(12), 157–161. http://www.ijhsr.org/archive_ijhsr_vol.4_issue12.html
Keogh, S., Larsen, E. N., Edwards, F., Totsika, M., Marsh, N., Harris, P. N. A., & Laupland, K. B. (2025). Speciation of coagulase-negative staphylococci: A cohort study on clinical relevance and outcomes. Infection, Disease & Health. Advance online publication. https://doi.org/10.1016/j.idh.2025.04.001
Khabiri, A., Toroghi, R., Mohammadabadi, M., & Tabatabaeizadeh, S. E. (2023). Introduction of a Newcastle disease virus challenge strain (sub-genotype VII.1.1) isolated in Iran. Veterinary Research Forum, 14(4), 221–227. https://doi.org/10.30466/vrf.2022.548152.3373
Khabiri, A., Toroghi, R., Mohammadabadi, M., & Tabatabaeizadeh, S. E. (2025). Whole genome sequencing and phylogenetic relative of a pure virulent Newcastle disease virus isolated from an outbreak in northeast Iran. Letters in Applied Microbiology, 78(4), Article ovaf049. https://doi.org/10.1093/lambio/ovaf049
Levey, A. S., Atkins, R., Coresh, J., Cohen, E. P., Collins, A. J., Eckardt, K.-U., Nahas, M. E., Jaber, B. L., Jadoul, M., Levin, A., Powe, N. R., Rossert, J., Wheeler, D. C., Lameire, N., & Eknoyan, G. (2007). Chronic kidney disease as a global public health problem: Approaches and initiatives – A position statement from Kidney Disease Improving Global Outcomes. Kidney International, 72(3), 247–259. https://doi.org/10.1038/sj.ki.5002343
Masakane, I., Nakai, S., Ogata, S., Kimata, N., Hanafusa, N., Hamano, T., Wakai, K., Wada, A., & Nitta, K. (2015). An overview of regular dialysis treatment in Japan (as of 31 December 2013). Therapeutic Apheresis and Dialysis, 19(6), 540–574. https://doi.org/10.1111/1744-9987.12378
Miragaia, M., Couto, I., Pereira, S. F., Kristinsson, K. G., Westh, H., Jarløv, J. O., Carriço, J., Almeida, J., Santos-Sanches, I., & de Lencastre, H. (2002). Molecular characterization of methicillin-resistant Staphylococcus epidermidis clones: Evidence of geographic dissemination. Journal of Clinical Microbiology, 40(2), 430–438. https://doi.org/10.1128/JCM.40.2.430-438.2002
Mohammadabadi, M. R., Shaikhaev, G. O., Sulimova, G. E., & Rahman, O. (2004). Detection of bovine leukemia virus proviral DNA in Yaroslavl, Mongolian, and Black Pied cattle by PCR. Cellular and Molecular Biology Letters, 9(4A), 766–768.
Mohammadabadi, M. R., Soflaei, M., Mostafavi, H., & Honarmand, M. (2011). Using PCR for early diagnosis of bovine leukemia virus infection in some native cattle. Genetics and Molecular Research, 10(4), 2658–2663. https://doi.org/10.4238/2011.October.27.2
Mohammadabadi, M., Afsharmanesh, M., Khezri, A., Kheyrodin, H., Babenko, O. I., Borshch, O., Kalashnyk, O., Nechyporenko, O., Afanasenko, V., Slynko, V., & Usenko, S. (2025). Effect of mealworm on GBP4L gene expression in the spleen tissue of Ross broiler chickens. Agricultural Biotechnology Journal, 17(2), 343–360. https://doi.org/10.22103/jab.2025.25277.1714
Mohammadabadi, M., Babenko, O. I., Borshch, O., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024). Measuring the relative expression pattern of the UCP2 gene in different tissues of the Raini Cashmere goat. Agricultural Biotechnology Journal, 16(3), 317–332. https://doi.org/10.22103/jab.2024.24337.1627
Mohan, U., Jindal, N., & Aggarwal, P. (2002). Species distribution and antibiotic sensitivity pattern of coagulase-negative staphylococci isolated from various clinical specimens. Indian Journal of Medical Microbiology, 20(1), 45–46. https://pubmed.ncbi.nlm.nih.gov/17657025
Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67(4), 593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
Piette, A., & Verschraegen, G. (2009). Role of coagulase-negative staphylococci in human disease. Veterinary Microbiology, 134(1–2), 45–54. https://doi.org/10.1016/j.vetmic.2008.09.009
Prasad, S., Nayak, N., Satpathy, G., Nag, H. L., Venkatesh, P., Ramakrishnan, S., Ghose, S., & Nag, T. C. (2012). Molecular & phenotypic characterization of Staphylococcus epidermidis in implant-related infections. Indian Journal of Medical Research, 136(3), 483–490. https://pubmed.ncbi.nlm.nih.gov/23041744
Pruthi, R., Steenkamp, R., & Feest, T. (2013). UK Renal Registry 16th annual report: Chapter 8 survival and cause of death of UK adult patients on renal replacement therapy in 2012: National and centre-specific analyses. Nephron Clinical Practice, 125(1–4), 139–169. https://doi.org/10.1159/000360027
Shahdadnejad, N., Mohammadabadi, M. R., & Shamsadini, M. (2016). Typing of Clostridium perfringens isolated from broiler chickens using multiplex PCR. Genetics in the Third Millennium, 14(4), 4368–4374.
Upadhyayula, S., Kambalapalli, M., & Asmar, B. I. (2012). Staphylococcus epidermidis urinary tract infection in an infant. Case Reports in Infectious Diseases, 2012, Article 983153. https://doi.org/10.1155/2012/983153
Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P&T, 40(4), 277–283. https://pubmed.ncbi.nlm.nih.gov/25859123
Vickers, A. A., Chopra, I., & O'Neill, A. J. (2007). Intrinsic novobiocin resistance in Staphylococcus saprophyticus. Antimicrobial Agents and Chemotherapy, 51(12), 4484–4485. https://doi.org/10.1128/AAC.00708-07
Weber, D. J., Rutala, W. A., Anderson, D. J., & Sickbert-Bennett, E. E. (2023). Biofilms on medical instruments and surfaces: Do they interfere with instrument reprocessing and surface disinfection. American Journal of Infection Control, 51(11, Suppl.), A114–A119. https://doi.org/10.1016/j.ajic.2023.04.158