Genetic Diversity Assessment of Lotus corniculatus L. in Khuzestan Using Molecular Markers and DNA Barcoding

Document Type : Research Paper

Authors

Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

10.22103/jab.2025.24998.1681

Abstract

Abstract
Objective
Lotus corniculatus L. is a widely distributed, tetraploid perennial legume valued for its adaptability to diverse environments and its applications in forage production, soil improvement, and medicine. It is essential to assess its genetic diversity using molecular markers for conservation and breeding strategies. This study presents the first molecular characterization of L. corniculatus accessions from Khuzestan province in southwestern Iran.
Materials and methods
Twenty-one L. corniculatus accessions were collected from eight geographically distinct sites. Genetic variation was assessed using 12 SCoT and 6 ISSR primers. Genetic structure and relationships among accessions were analyzed using cluster analysis, principal coordinate analysis (PCoA), and the STRUCTURE software. To complement these analyses, three genetically divergent accessions were selected for sequencing of two DNA barcode regions: the internal transcribed spacer (ITS) of nuclear ribosomal DNA and the trnH-psbA intergenic spacer of the chloroplast genome. Barcoded sequences were analyzed using BLAST and Maximum Likelihood phylogenetic reconstruction.
Results
SCoT and ISSR markers revealed high polymorphism (96.87% and 85.8%, respectively), indicating substantial genetic diversity among the accessions. Cluster and PCoA consistently grouped the accessions into two main clusters, with the Minoo Island accession forming a distinct and divergent group. STRUCTURE analysis supported the existence of three genetic clusters, reflecting both admixture and clear genetic differentiation. DNA barcoding revealed that all three sequenced accessions, including the genetically distinct Minoo Island accession, shared identical sequences in both the ITS and trnH-psbA regions, forming a single haplotype, here designated as the Iranian haplotype. The ITS sequence exhibited 99.71% identity with L. tenuis, while the trnH-psbA region showed 100% identity with L. japonicus. However, both barcode regions lacked sufficient resolution to distinguish intraspecific variation.
Conclusions
Both marker systems were effective in detecting genetic diversity, with SCoT markers showing higher average polymorphism and mean PIC values, and ISSR markers exhibiting stronger marker index and resolving power. The distinct clustering of the Minoo Island accession highlights the potential for local adaptation and underlines the importance of conserving regional germplasm. In contrast, the lack of variation in the barcode sequences emphasizes the limited ability of conserved regions such as ITS and trnH-psbA to resolve fine-scale genetic structure. Complementary tools such as chromosome counting and genome-wide markers (e.g., SNP genotyping, RAD-seq, WGS) are recommended to improve taxonomic resolution.

Keywords


Abdallah, R. M., Hammoda, H. M., El-Gazzar, N. S., & Sallam, S. M. (2022). Chemical constituents and biological activities of genus Lotus: An updated review. Records of Pharmaceutical and Biomedical Sciences, 6(2), 147-162. https://doi.org/10.21608/rpbs.2022.150727.1157
Abraham, E. M., Ganopoulos, I., Giagourta, P., Osathanunkul, M., Bosmali, I., Tsaftaris, A., Papioannou, A., & Madesis, P. (2015). Genetic diversity of Lotus corniculatus in relation to habitat type, species composition and species diversity. Biochemical Systematics and Ecology, 63, 59-67. https://doi.org/10.1016/j.bse.2015.09.026
Bailey, C. D., Carr, T. G., Harris, S. A., & Hughes, C. E. (2003). Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution, 29(3), 435-455. https://doi.org/10.1016/j.ympev.2003.08.021
Bidyananda, N., Jamir, I., Nowakowska, K., Varte, V., Vendrame, W. A., Devi, R. S., & Nongdam, P. (2024). Plant genetic diversity studies: insights from DNA marker analyses. International Journal of Plant Biology, 15(3), 607-640. https://doi.org/10.3390/ijpb15030046
Chen, C., Zhang, K., Liu, F., Wang, X., Yao, Y., Niu, X., He, Y., Hong, J., Liu, F., Gao, Q., Zhang, Y., Li, Y., Wang, M., Lin, J., Fan, Y., Ren, K., Shen, L., Gao, B., Ren, X., Yang, W., Georgiev, M. I., Zhang, X., & Zhou, M. (2023). Resequencing of global Lotus corniculatus accessions reveals population distribution and genetic loci, associated with cyanogenic glycosides accumulation and growth traits. BMC Biology, 21(1), 1-17. https://doi.org/10.1186/s12915-023-01670-7
Chesnokov, Y. V., & Artemyeva, A. M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology, 50(5), 571-578. https://doi.org/10.15389/agrobiology.2015.5.571eng
Collard, B. C., & Mackill, D. J. (2009). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 27, 86-93. https://doi.org/10.1007/s11105-008-0060-5
Degtjareva, G. V., Kramina, T. E., Sokoloff, D. D., Samigullin, T. H., Sandral, G., & Valiejo-Roman, C. M. (2008). New data on nrITS phylogeny of Lotus (Leguminosae, Loteae). Wulfenia, 15, 35-49.
Degtjareva, G. V., Samigullin, T. H., Valiejo-Roman, C. M., Chatelain, C., Sokoloff, D. D., & Kramina, T. E. (2025). Filling the last major gap in the phylogeny of Lotus (Leguminosae): the nearly extinct Lotus benoistii from Morocco, a potentially important breeding resource. Taxonomy, 5(1), 1-28. https://doi.org/10.3390/taxonomy5010006
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x.
Gauthier, P., Lumaret, R., & Bédécarrats, A. (1998). Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (DC) Schleicher/L. corniculatus L.). II. insights from RFLP of chloroplast DNA. Heredity, 80(6), 694-701. https://doi.org/10.1046/j.1365-2540.1998.00335.x
Grant, W. F., & Small, E. (1996). The origin of the Lotus corniculatus (Fabaceae) complex: a synthesis of diverse evidence. Canadian Journal of Botany, 74(7), 975-989. https://doi.org/10.1139/b96-122
Haghighipor, Z., Dehdari, M., Nasernakhaei, F., & Amiri Fahliani, R. (2024). Evaluation of genetic diversity of Suaeda aegyptiaca genotypes in Khuzestan Province using SCoT molecular markers. Agricultural Biotechnology Journal, 16(4), 99-120. https://doi.org/10.22103/jab.2024.22888.1549
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9.
Heidari, Z., & Salari, H. (2024). Genetic diversity of tomato's cultivars assessed through ISSR marker. Agricultural Biotechnology Journal, 16(1), 175-194. https://doi.org/10.22103/jab.2024.20927.1453
Khandanizadeh, B., Alizadeh, A., Aien, A., Mohammadinejad, G., & Ebrahimi, F. (2024). Evaluation of genetic diversity and population structure of Iranian native henna ecotypes using ISSR molecular markers and phenotypic traits. Agricultural Biotechnology Journal, 17(1), 27-44. https://doi.org/10.22103/jab.2024.23528.1573
Kramina, T. E. (2013). Genetic variation and hybridization between Lotus corniculatus L. and L. stepposus Kramina (Leguminosae) in Russia and Ukraine: evidence from ISSR marker patterns and morphology. Wulfenia, 20(1), 81-100.
Kramina, T. E., Degtjareva, G. V., & Meschersky, I. G. (2012). Analysis of hybridization between tetraploid Lotus corniculatus and diploid Lotus stepposus (Fabaceae-Loteae): morphological and molecular aspects. Plant Systematics and Evolution, 298, 629-644. https://doi.org/10.1007/s00606-011-0572-6
Kramina, T. E., Degtjareva, G. V., Samigullin, T. H., Valiejo-Roman, C. M., Kirkbride, Jr, J. H., Volis, S., Deng, T., & Sokoloff, D. D. (2016). Phylogeny of Lotus (Leguminosae: Loteae): partial incongruence between nrITS, nrETS and plastid markers and biogeographic implications. Taxon, 65(5), 997-1018. https://doi.org/10.12705/655.4
Kramina, T. E., Meschersky, I. G., Degtjareva, G. V., Samigullin, T. H., Belokon, Y. S., & Schanzer, I. A. (2018). Genetic variation in the Lotus corniculatus complex (Fabaceae) in northern Eurasia as inferred from nuclear microsatellites and plastid trnL-trnF sequences. Botanical Journal of the Linnean Society, 188, 87-116. https://doi.org/10.1093/botlinnean/boy042
Kumar, S., Stecher, G., Suleski, M., Sanderford, M., Sharma, S., & Tamura, K. (2024). MEGA12: molecular evolutionary genetic analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41(12), 1-9. https://doi.org/10.1093/molbev/msae263
Letsiou, S., Madesis, P., Vasdekis, E., Montemurro, C., Grigoriou, M. E., Skavdis, G., Moussis, V., Koutelidakis, A. E., & Tzakos, A. G. (2024). DNA barcoding as a plant identification method. Applied Sciences, 14(4), 1-12. https://doi.org/10.3390/app14041415
Li, Y. L., & Liu, J. X. (2018). StructureSelector: a web based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1), 176-177. https://doi.org/10.1111/1755-0998.12719
Loera-Sánchez, M., Studer, B., & Kölliker, R. (2020). DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Research Notes, 13(1), 1-6. https://doi.org/10.1186/s13104-020-4897-5
Merkouropoulos, G., Hilioti, Z., Abraham, E. M., & Lazaridou, M. (2016). Evaluation of Lotus corniculatus L. accessions from different locations at different altitudes reveals phenotypic and genetic diversity. Grass and Forage Science, 72, 1-6. https://doi.org/10.1111/gfs.12279
Mimura, M., Ono, K., Goka, K., & Hara, T. (2013). Standing variation boosted by multiple sources of introduction contributes to the success of the introduced species, Lotus corniculatus. Biological Invasions, 15, 2743-2754. https://doi.org/10.1007/s10530-013-0488-x
Moradi Ashour, B., Rabiei, M., Shiran, B., & Nouraein, M. (2023). Evaluating and identification of genetic variation of some of Pomegranate (Punica granatum) genotypes using DNA barcoding (ITS). Agricultural Biotechnology Journal, 15(1), 107-124. https://doi.org/10.22103/jab.2023.19797.1414
Mousavi, Z. S., & Nasernakhaei, F. (2025). Evaluation of morphological variability of bird's-foot trefoil (Lotus corniculatus L.) accessions in Khuzestan province. Plant Productions, 48(2), 173-187. https://doi.org/10.22055/ppd.2025.48468.2235
Ng, W. L., & Tan, S. G. (2015). Inter-simple sequence repeat (ISSR) markers: Are we doing it right?. ASM Science Journal, 9(1), 30-39.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. https://doi.org/10.1093/genetics/155.2.945
Roberts, I. M. (1984). The taxonomy of Lotus corniculatus L. sensu lato. [Doctoral dissertation University of Glasgow, United Kingdom].
Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14(1), 1-20. https://doi.org/10.3390/genes14010174
Sang, T., Crawford, D. J., & Stuessy, T. F. (1997). Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 84(8), 1120-1136. https://doi.org/10.2307/2446155
Savo Sardaro, M. L., Atallah, M., Tavakol, E., Russi, L., & Porceddu, E. (2008). Diversity for AFLP and SSR in natural populations of Lotus corniculatus L. from Italy. Crop Science, 48(3), 1080-1089. https://doi.org/10.2135/cropsci2007.05.0301
Serrote, C. M. L., Reiniger, L. R. S., Silva, K. B., dos Santos Rabaiolli, S. M., & Stefanel, C. M. (2020). Determining the polymorphism information content of a molecular marker. Gene, 726, 1-15. https://doi.org/10.1016/j.gene.2019.144175
Steiner, J. J., & García de los Santos, G. (2001). Adaptive ecology of Lotus corniculatus L. genotypes: I. plant morphology and RAPD marker characterizations. Crop Science, 41(2), 552-563. https://doi.org/10.2135/cropsci2001.412552x
Tate, J. A., & Simpson, B. B. (2003). Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany, 28(4), 723-737. https://doi.org/10.1043/02-64.1
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A guide to methods and applications/Academic Press, Inc. 315-322.
Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H., & Mao, J. X. (1999). POPGENE version 1.32: microsoft windows-based freeware for population genetic analysis. University of Alberta, Edmonton, Canada.
Yerlikaya, S., Baloglu, M. C., Diuzheva, A., JekÅ‘, J., Cziáky, Z., & Zengin, G. (2019). Investigation of chemical profile, biological properties of Lotus corniculatus L. extracts and their apoptotic-autophagic effects on breast cancer cells. Journal of Pharmaceutical and Biomedical Analysis, 174, 286-299. https://doi.org/10.1016/j.jpba.2019.05.068
Zabet, M., Pishghadam, S., & Alizadeh, Z. (2023). Evaluation of genetic diversity of Alhagi maurorum ecotypes using ISSR and SCoT markers in Razavi, Northern and Southern Khorasan provinces Agricultural Biotechnology Journal, 15(1), 81-106. https://doi.org/10.22103/jab.2022.18997.1383