The comparative effect of the Trichoderma atroviride and biopesticide Biocont in suppressing date palm leaf spot disease caused by Alternaria alternata

Document Type : Research Paper

Authors

1 Plant Protection Department, Agriculture College, University of Basrah, Basrah, Iraq

2 Date Palm Research Center, University of Basrah, Basrah, Iraq.

10.22103/jab.2025.25280.1715

Abstract

Objective
Biological control of phytopathogenic fungi is a hopeful plan, exclusively applying high-potency bioagents. This investigation aimed to compare the effectiveness of Trichoderma atroviride and the biopesticide Biocont in preventing the growth of Alternaria alternata, the causal agent of leaf spot disease in date palms, with Trichoderma harzianum as a comparative bioagent.

Materials and Methods
The pathogenicity of A. alternata was evaluated on leaves of three date palm cultivars (Barhi, Halawi, Sayer). The antagonistic effects of T. atroviride and T. harzianum against A. alternata were experimented at different temperatures applying the dual culture method. The percentage of growth prevention was calculated for the biological agents and the pathogenic fungus after 7 days of co-inoculation. The impression of temperature on the antagonistic interactions was evaluated, calculating the radial growth of A. alternata at 20°C and 30°C.

Results
A. alternata created leaf spot disease, with symptoms described by blackish-gray spots spreading across the leaf surface. The highest reduction in A. alternata growth was observed at 30°C, where T. atroviride restricted pathogen growth to 1.23 cm. The lowest reduction occurred at 20°C with T. harzianum, where A. alternata growth reached 3.03 cm. The highest prevention rate of A. alternata (81.31%) was achieved at 30°C in the presence of T. atroviride, while the lowest prevention rate (39.33%) was document at 20°C with T. harzianum. This investigation affirmed that Trichoderma species generate secondary metabolites with antagonistic effects against plant pathogens. Additionally, these metabolites can activate resistance mechanisms in plants, enhancing protection against diseases.

Conclusions
The results demonstrate that Trichoderma species synthesize diverse secondary metabolites effective in suppressing plant pathogens. T. atroviride exhibited superior prevention of A. alternata at 30°C compared to T. harzianum, which showed the lowest prevention at 20°C. These results support the selection of T. atroviride as an effective biological control agent for reducing date palm leaf spot disease. The investigation suggests potential for developing T. atroviride-based biocontrol agents tailored to the environmental situations of date palm cultivation.

Keywords


Ahmed, A. N. (2011). First record of the fungus Meier, Drechsler and Eddy (Alternaria radicina) as a causative agent of black leaf spot disease on date palms in Basra Governorate and its biological control. Basra Journal of Agricultural Sciences, 24(2), 47–63. https://doi.org/10.33762/bagrs.2011.57208
Alfiky, A., & Weisskopf, L. (2021). Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. Journal of Fungi, 7(1), Article 61. https://doi.org/10.3390/jof7010061
Al-Rawi, K. M., & Khalaf Allah, A. A. M. (1980). Design and analysis of agricultural experiments. Dar Al-Kutub for Printing and Publishing. http://dx.doi.org/10.13140/RG.2.2.27925.06889
Al-Rokibah, A. A., Abdalla, M. Y., & El-Fakharani, Y. M. (1998). Effect of water salinity on Thielaviopsis paradoxa and growth of date palm seedlings. Journal of King Saud University - Agricultural Sciences, 10(1), 55–63. https://doi.org/10.5555/19981009764
Ayika, M. G., Rosano, A., Valiente, J., Chakrabarti, S., Rollins, J. A., & Dhillon, B. (2024). Characterizing the palm pathogenic Thielaviopsis species from Florida. Journal of Fungi, 10(4), Article 247. https://doi.org/10.3390/jof10040247
Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249–260. https://pubmed.ncbi.nlm.nih.gov/15666245/
Colabardini, A. C., Ries, L. N. A., Brown, N. A., Dos Reis, T. F., Savoldi, M., Goldman, M. H., Menino, J. F., Rodrigues, F., & Goldman, G. H. (2014). Functional characterization of a xylose transporter in Aspergillus nidulans. Biotechnology for Biofuels, 7(1), Article 46. https://doi.org/10.1186/1754-6834-7-46
Degenkolb, T., Fog Nielsen, K., Dieckmann, R., Branco-Rocha, F., Chaverri, P., Samuels, G. J., Thrane, U., von Döhren, H., Vilcinskas, A., & Brückner, H. (2015). Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex. Chemistry & Biodiversity, 12(4), 662–684. https://doi.org/10.1002/cbdv.201400300
Djerbi, M. (1983). Diseases of the date palm (Phoenix dactylifera L.). FAO, Regional Project for Palm and Dates Research Center in the Near East and North Africa.
Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., Mukherjee, P. K., Zeilinger, S., Grigoriev, I. V., & Kubicek, C. P. (2011). Trichoderma: The genomics of opportunistic success. Nature Reviews Microbiology, 9(10), 749–759. https://doi.org/10.1038/nrmicro2637
Gawai, D. U., & Mangnalikar, S. S. (2018). Effect of temperature and pH on growth of Alternaria alternata, leaf spot pathogen of soyabean. Bioscience Discovery, 9(1), 162–165. https://jbsd.in/Vol%209%20No%201/Gawai162-165.pdf
Haouhach, S., Karkachi, N., Oguiba, B., Sidaoui, A., Chamorro, I., Kihal, M., & Monte, E. (2020). Three new reports of Trichoderma in Algeria: T. atrobrunneum (South), T. longibrachiatum (South), and T. afroharzianum (Northwest). Microorganisms, 8(10), Article 1455. https://doi.org/10.3390/microorganisms8101455
Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190–194. https://doi.org/10.1094/PHYTO-96-0190
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56. https://doi.org/10.1038/nrmicro797
Hermosa, R., Rubio, M. B., Cardoza, R. E., Nicolás, C., Monte, E., & Gutiérrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology, 16(2), 69–80. https://doi.org/10.2436/20.1501.01.181
Herrera-Téllez, V. I., Cruz-Olmedo, A. K., Plasencia, J., Gavilanes-Ruíz, M., Arce-Cervantes, O., Hernández-León, S., & Saucedo-García, M. (2019). The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. International Journal of Molecular Sciences, 20(8), Article 2007. https://doi.org/10.3390/ijms20082007
Hoitink, H. A. J., Stone, A. H., & Han, D. Y. (1997). Suppression of plant disease by composts. HortScience, 32(2), 184–187. https://doi.org/10.21273/HORTSCI.32.2.184
Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10. https://doi.org/10.1094/PDIS.2003.87.1.4
Jassim, N. S., & Ahmed, A. N. (2024). The isolation and molecular identification of the main fungus caused leaf spots on date palms (Phoenix dactylifera L.). Archives of Phytopathology and Plant Protection, 57(7), 542–554. https://doi.org/10.1080/03235408.2024.2375038
Krzyśko-Łupicka, T., Walkowiak, W., & Białoń, M. (2019). Comparison of the fungistatic activity of selected essential oils relative to Fusarium graminearum isolates. Molecules, 24(2), Article 311. https://doi.org/10.3390/molecules24020311
Kubicek, C. P., & Harman, G. E. (Eds.). (1998). Trichoderma and Gliocladium: Basic biology, taxonomy and genetics (Vol. 1). Taylor & Francis. https://doi.org/10.1201/9781482295320
Maheshwari, R. (2005). Fungi: Experimental methods in biology (1st ed.). CRC Press. https://doi.org/10.1201/9781420027648
Manzar, N., Kashyap, A. S., Goutam, R. S., Rajawat, M. V. S., Sharma, P. K., Sharma, S. K., & Singh, H. V. (2022). Trichoderma: Advent of versatile biocontrol agent, its secrets and insights into mechanism of biocontrol potential. Sustainability, 14(19), Article 12786. https://doi.org/10.3390/su141912786
Mohiddin, F. A., Khan, M. R., Khan, S. M., & Bhat, B. H. (2010). Why Trichoderma is considered super hero (super fungus) against the evil parasites? Plant Pathology Journal, 9(3), 92–102. https://doi.org/10.3923/ppj.2010.92.102
Poosapati, S., Ravulapalli, P. D., Viswanathaswamy, D. K., & Kannan, M. (2021). Proteomics of two thermotolerant isolates of Trichoderma under high-temperature stress. Journal of Fungi, 7(12), Article 1002. https://doi.org/10.3390/jof7121002
Promwee, A., Yenjit, P., Issarakraisila, M., Intana, W., & Chamswarng, C. (2017). Efficacy of indigenous Trichoderma harzianum in controlling Phytophthora leaf fall (Phytophthora palmivora) in Thai rubber trees. Journal of Plant Diseases and Protection, 124(1), 41–50. https://doi.org/10.1007/s41348-016-0051-y
Pryor, B. M., Davis, R. M., & Gilbertson, R. L. (2000). A toothpick inoculation method for evaluating carrot cultivars for resistance to Alternaria radicina. HortScience, 35(6), 1099–1102. https://doi.org/10.21273/HORTSCI.35.6.1099
Qi, W., & Zhao, L. (2013). Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology, 53(4), 355–364. https://doi.org/10.1002/jobm.201200031
Sharifi Tehrani, A., & Nazari, S. (2004). Antagonistic effects of Trichoderma harzianum on Phytophthora drechsleri, the causal agent of cucumber damping-off. Acta Horticulturae, 635, 137–139. https://doi.org/10.17660/ActaHortic.2004.635.17
Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48(1), 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450
Tjamos, E. C., & Paplomatas, E. J. (1988). Long-term effect of soil solarization on Verticillium wilt of artichokes in Greece. Plant Pathology, 37(4), 507–515. https://doi.org/10.1111/j.1365-3059.1988.tb02108.x
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952–1965. https://doi.org/10.5897/AJAR2015.10584
Wang, R., Liu, C., Jiang, X., Tan, Z., Li, H., Xu, S., Zhang, S., Shang, Q., Deising, H. B., Behrens, S. E., & Wu, B. (2022). The newly identified Trichoderma harzianum partitivirus (ThPV2) does not diminish spore production and biocontrol activity of its host. Viruses, 14(7), Article 1532. https://doi.org/10.3390/v14071532
Widden, P., & Hsu, D. (1987). Competition between Trichoderma species: Effects of temperature and litter type. Soil Biology and Biochemistry, 19(1), 89–93. https://doi.org/10.1016/0038-0717(87)90130-1
Woo, S. L., & Lorito, M. (2007). Exploiting the interactions between fungal antagonists, pathogens, and the plant for biocontrol. In M. Vurro & J. Gressel (Eds.), Novel biotechnologies for biocontrol agent enhancement and management (pp. 107–130). Springer. https://doi.org/10.1007/978-1-4020-5799-1_6
Zheng, H., Qiao, M., Lv, Y., Du, X., Zhang, K. Q., & Yu, Z. (2021). New species of Trichoderma isolated as endophytes and saprobes from Southwest China. Journal of Fungi, 7(6), Article 467. https://doi.org/10.3390/jof7060467
Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168–178. https://doi.org/10.1016/j.aoas.2020.09.003