Al-Hasani, K., Rajakumar, K., Bulach, D., Robins-Browne, R., Adler, B., & Sakellaris, H. (2001). Genetic organization of the she pathogenicity island in Shigella flexneri 2a. Microbial Pathogenesis, 30(1), 1-8. https://doi.org/10.1006/mpat.2000.0404.
Algarni, S., Gudeta, D. D., Han, J., Nayak, R., & Foley, S. L. (2024). Genotypic analyses of IncHI2 plasmids from enteric bacteria. Scientific Reports, 14(1), 9802. https://doi.org/10.1038/s41598-024-59870-2.
Ashkenazi, S., Levy, I., Kazaronovski, V., & Samra, Z. (2003). Growing antimicrobial resistance of Shigella isolates. Journal of Antimicrobial Chemotherapy, 51(2), 427-429. https://doi.org/10.1093/jac/dkg080.
Bennish, M. L. (1991). Potentially lethal complications of shigellosis. Reviews of Infectious Diseases, 13(Supplement_4), S319-S324. https://doi.org/10.1093/clinids/13.supplement_4.s319.
Bose, P., Chowdhury, G., Halder, G., Ghosh, D., Deb, A. K., Kitahara, K., Miyoshi, S.-i., Morita, M., Ramamurthy, T., & Dutta, S. (2024). Prevalence and changing antimicrobial resistance profiles of Shigella spp. isolated from diarrheal patients in Kolkata during 2011–2019. PLoS Neglected Tropical Diseases, 18(2), e0011964. https://doi.org/10.1371/journal.pntd.0011964.
Chinault, A. C., Blakesley, V. A., Roessler, E., Willis, D. G., Smith, C. A., Cook, R. G., & Fenwick Jr, R. G. (1986). Characterization of transferable plasmids from Shigella flexneri 2a that confer resistance to trimethoprim, streptomycin, and sulfonamides. Plasmid, 15(2), 119-131. https://doi.org/10.1016/0147-619x(86)90048-x.
Chung The, H., Bodhidatta, L., Pham, D. T., Mason, C. J., Ha Thanh, T., Voong Vinh, P., Turner, P., Hem, S., Dance, D. A., & Newton, P. N. (2021). Evolutionary histories and antimicrobial resistance in Shigella flexneri and Shigella sonnei in Southeast Asia. Communications Biology, 4(1), 353. https://doi.org/10.1038/s42003-021-01905-9.
Gutierrez-Jimenez, J., Arciniega, I., & Navarro-García, F. (2008). The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate. Microbial Pathogenesis, 45(2), 115-123. https://doi.org/10.1016/j.micpath.2008.04.006.
Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., & Taipale, J. (2018). CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine, 24(7), 927-930. https://doi.org/10.1038/s41591-018-0049-z.
Hashemabadi, M., Sasan, H., Amandadi, M., Esmaeilzadeh-Salestani, K., Esmaeili-Mahani, S., & Ravan, H. (2023). CRISPR/Cas9-mediated disruption of ZNF543 gene: an approach toward discovering its relation to TRIM28 gene in Parkinson’s disease. Molecular Biotechnology, 65(2), 243-251. . https://doi.org/10.1007/s12033-022-00494-0.
Hashemabadi, M., Sasan, H. A., Hosseinkhani, S., Amandadi, M., Samareh Gholami, A., & Sadeghizadeh, M. (2024). Intelligent guide RNA: dual toehold switches for modulating luciferase in the presence of trigger RNA. Communications Biology, 7(1), 1344. .https://doi.org/10.1038/s42003-024-06988-8.
He, X., Miao, V., & Baltz, R. H. (2005). Spectinomycin resistance in rpsE mutants is recessive in Streptomyces roseosporus. The Journal Of Antibiotics, 58(4), 284-288. https://doi.org/10.1038/ja.2005.35.
Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F., & Nataro, J. P. (1999). Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infection and Immunity, 67(11), 5587-5596. https://doi.org/10.1128/iai.67.11.5587-5596.1999.
Henderson, I. R., & Nataro, J. P. (2001). Virulence functions of autotransporter proteins. Infection and Immunity, 69(3), 1231-1243. https://doi.org/10.1128/iai.69.3.1231-1243.2001.
Henry, J. B., & Russell, J. P. (1969). Antibiotic sensitivity testing. Postgraduate Medicine, 45(1), 51-54 https://doi.org/10.1080/00325481.1969.11696981.
Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233-239. https://doi.org/10.1038/nbt.2508.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. . https://doi.org/10.1126/science.1225829.
Kozovska, Z., Rajcaniova, S., Munteanu, P., Dzacovska, S., & Demkova, L. (2021). CRISPR: History and perspectives to the future. Biomedicine & Pharmacotherapy, 141, 111917. https://doi.org/10.1016/j.biopha.2021.111917.
O'connor, M., & Dahlberg, A. E. (2002). Isolation of spectinomycin resistance mutations in the 16S rRNA of Salmonella enterica serovar Typhimurium and expression in Escherichia coli and Salmonella. Current Microbiology, 45, 0429-0433. https://doi.org/10.1007/s00284-002-3684-y.
Oany, A. R., Pervin, T., Mia, M., Hossain, M., Shahnaij, M., Mahmud, S., & Kibria, K. K. (2017). Vaccinomics approach for designing potential peptide vaccine by targeting Shigella spp. serine protease autotransporter subfamily protein SigA. Journal Of Immunology Research, 2017(1), 6412353. https://doi.org/10.1155/2017/6412353.
World Health Organization. (2005). Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1 (ISBN 924159330X). Geneva: WHO.
Philpott, D. J., Edgeworth, J. D., & Sansonetti, P. J. (2000). The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355(1397), 575-586. https://doi.org/10.1098/rstb.2000.0599.
Reisch, C. R., & Prather, K. L. (2015). The no-SCAR (S carless C as9 A ssisted R ecombineering) system for genome editing in Escherichia coli. Scientific Reports, 5(1), 15096. https://doi.org/10.1038/srep15096.
Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L., & Corn, J. E. (2016). Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology, 34(3), 339-344. https://doi.org/10.1038/nbt.3481.
Rozwandowicz, M., Brouwer, M., Fischer, J., Wagenaar, J., Gonzalez-Zorn, B., Guerra, B., Mevius, D., & Hordijk, J. (2018). Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 73(5), 1121-1137. https://doi.org/10.1093/jac/dkx488.
Samare Gholami, A., SASAN, H.A., HASHEMABADI, M., & Ravan, H.. (2020). Design and Construction of Recombinant CRISPR Vector Harboring LRRK2 Gene for Parkinson's Disease. JOURNAL OF CELL & TISSUE, 10(4 ), 214-225. SID. https://sid.ir/paper/364460/en. (in Persian)
Schnupf, P., & Sansonetti, P. J. (2019). Shigella pathogenesis: new insights through advanced methodologies. Bacteria and Intracellularity, 15-39. https://doi.org/10.1128/microbiolspec.bai-0023-2019.
Shigella species. (2008). In Foodborne Microbial Pathogens: Mechanisms and Pathogenesis (pp. 253-265). Springer New York .https://doi.org/10.1007/978-0-387-74537-4_15.
Smaill, F. (2000). Antibiotic susceptibility and resistance testing: an overview. Canadian Journal of Gastroenterology and Hepatology, 14(10), 871-875. https://doi.org/10.1155/2000/382415.
Trofa, A. F., Ueno-Olsen, H., Oiwa, R., & Yoshikawa, M. (1999). Dr. Kiyoshi Shiga: discoverer of the dysentery bacillus. Clinical Infectious Diseases, 29(5), 1303-1306. https://doi.org/10.1086/313437.