The effect of the intrinsic resistance of Shigella flexneri 2a to spectinomycin on the efficiency of the CRISPR/Cas9 system

Document Type : Research Paper

Authors

1 Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

2 Associate Professor, Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

3 Professor, Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

10.22103/jab.2025.25382.1717

Abstract

Objective
Targeted gene editing in pathogenic bacteria such as Shigella flexneri 2a using the advanced CRISPR/Cas9 system is a significant step in developing genetic tools and novel therapeutic strategies. However, the success of this process heavily relies on the precise selection of recombinant clones, typically through suitable antibiotic markers. In the current study, we evaluated the efficacy of antibiotic markers (spectinomycin and kanamycin) in pTargetF:gRNA-pic and pEcCas plasmids in the clinical strain of Shigella flexneri 2a.
Materials and methods
First, the target region of the pic gene (a crucial virulence factor in Shigella) was identified. Based on this sequence, gRNA guide sequences, specific primers, and homologous recombination arms (HDR arms) were meticulously designed. Subsequently, targeted sgRNA cloning to the pic gene in the pTargetF plasmid was performed, and the plasmid’s structural integrity was confirmed using PCR and sequencing methods. Next, the successful introduction of the pEcCas plasmid into Shigella flexneri 2a cells was achieved via heat shock. Following this, the recombinant pTargetF plasmid, along with HDR arms, was transferred into bacteria containing the pEcCas plasmid using electroporation. Initial selection of transformed clones during the cloning stage on LB media containing kanamycin was successful. To investigate potential antibiotic alternatives, the wild-type Shigella flexneri 2a strain was also cultured on media containing chloramphenicol, ampicillin, and streptomycin.
Results
After electroporation and culturing of recombinant and wild-type (control) strains on media containing spectinomycin and kanamycin, the entire surface of the plates was covered with uniform bacterial growth, making the differentiation of recombinant clones impossible. This inability to differentiate resistant clones clearly indicates the intrinsic or widespread resistance of the Shigella flexneri 2a strain to spectinomycin. Furthermore, indiscriminate and widespread bacterial growth was observed in the wild-type strain when cultured on media containing chloramphenicol, ampicillin, and streptomycin, confirming the intrinsic resistance of this strain to several common antibiotics.
Conclusions
These findings highlight that, in this particular strain, the use of spectinomycin as a selection marker is inappropriate. For successful editing of pathogenic genes in similarly resistant strains, it is recommended to employ alternative selection markers to which the bacterium is sensitive (such as kanamycin), or to utilize markerless systems. Moreover, conducting preliminary antibiotic susceptibility testing (even in a simplified form) is essential prior to any molecular cloning or genome editing procedures.

Keywords


Al-Hasani, K., Rajakumar, K., Bulach, D., Robins-Browne, R., Adler, B., & Sakellaris, H. (2001). Genetic organization of the she pathogenicity island in Shigella flexneri 2a. Microbial Pathogenesis, 30(1), 1-8. https://doi.org/10.1006/mpat.2000.0404.
Algarni, S., Gudeta, D. D., Han, J., Nayak, R., & Foley, S. L. (2024). Genotypic analyses of IncHI2 plasmids from enteric bacteria. Scientific Reports, 14(1), 9802. https://doi.org/10.1038/s41598-024-59870-2.
Ashkenazi, S., Levy, I., Kazaronovski, V., & Samra, Z. (2003). Growing antimicrobial resistance of Shigella isolates. Journal of Antimicrobial Chemotherapy, 51(2), 427-429.  https://doi.org/10.1093/jac/dkg080.
Bennish, M. L. (1991). Potentially lethal complications of shigellosis. Reviews of Infectious Diseases, 13(Supplement_4), S319-S324. https://doi.org/10.1093/clinids/13.supplement_4.s319.
Bose, P., Chowdhury, G., Halder, G., Ghosh, D., Deb, A. K., Kitahara, K., Miyoshi, S.-i., Morita, M., Ramamurthy, T., & Dutta, S. (2024). Prevalence and changing antimicrobial resistance profiles of Shigella spp. isolated from diarrheal patients in Kolkata during 2011–2019. PLoS Neglected Tropical Diseases, 18(2), e0011964.  https://doi.org/10.1371/journal.pntd.0011964.
Chinault, A. C., Blakesley, V. A., Roessler, E., Willis, D. G., Smith, C. A., Cook, R. G., & Fenwick Jr, R. G. (1986). Characterization of transferable plasmids from Shigella flexneri 2a that confer resistance to trimethoprim, streptomycin, and sulfonamides. Plasmid, 15(2), 119-131. https://doi.org/10.1016/0147-619x(86)90048-x.
Chung The, H., Bodhidatta, L., Pham, D. T., Mason, C. J., Ha Thanh, T., Voong Vinh, P., Turner, P., Hem, S., Dance, D. A., & Newton, P. N. (2021). Evolutionary histories and antimicrobial resistance in Shigella flexneri and Shigella sonnei in Southeast Asia. Communications Biology, 4(1), 353. https://doi.org/10.1038/s42003-021-01905-9.
Gutierrez-Jimenez, J., Arciniega, I., & Navarro-García, F. (2008). The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate. Microbial Pathogenesis, 45(2), 115-123. https://doi.org/10.1016/j.micpath.2008.04.006.
Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., & Taipale, J. (2018). CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine, 24(7), 927-930. https://doi.org/10.1038/s41591-018-0049-z.
Hashemabadi, M., Sasan, H., Amandadi, M., Esmaeilzadeh-Salestani, K., Esmaeili-Mahani, S., & Ravan, H. (2023). CRISPR/Cas9-mediated disruption of ZNF543 gene: an approach toward discovering its relation to TRIM28 gene in Parkinson’s disease. Molecular Biotechnology, 65(2), 243-251. . https://doi.org/10.1007/s12033-022-00494-0.
Hashemabadi, M., Sasan, H. A., Hosseinkhani, S., Amandadi, M., Samareh Gholami, A., & Sadeghizadeh, M. (2024). Intelligent guide RNA: dual toehold switches for modulating luciferase in the presence of trigger RNA. Communications Biology, 7(1), 1344. .https://doi.org/10.1038/s42003-024-06988-8.
He, X., Miao, V., & Baltz, R. H. (2005). Spectinomycin resistance in rpsE mutants is recessive in Streptomyces roseosporus. The Journal Of Antibiotics, 58(4), 284-288. https://doi.org/10.1038/ja.2005.35.
Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F., & Nataro, J. P. (1999). Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infection and Immunity, 67(11), 5587-5596. https://doi.org/10.1128/iai.67.11.5587-5596.1999.
Henderson, I. R., & Nataro, J. P. (2001). Virulence functions of autotransporter proteins. Infection and Immunity, 69(3), 1231-1243. https://doi.org/10.1128/iai.69.3.1231-1243.2001.
Henry, J. B., & Russell, J. P. (1969). Antibiotic sensitivity testing. Postgraduate Medicine, 45(1), 51-54 https://doi.org/10.1080/00325481.1969.11696981.
Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233-239. https://doi.org/10.1038/nbt.2508.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. . https://doi.org/10.1126/science.1225829.
Kozovska, Z., Rajcaniova, S., Munteanu, P., Dzacovska, S., & Demkova, L. (2021). CRISPR: History and perspectives to the future. Biomedicine & Pharmacotherapy, 141, 111917. https://doi.org/10.1016/j.biopha.2021.111917.
O'connor, M., & Dahlberg, A. E. (2002). Isolation of spectinomycin resistance mutations in the 16S rRNA of Salmonella enterica serovar Typhimurium and expression in Escherichia coli and Salmonella. Current Microbiology, 45, 0429-0433. https://doi.org/10.1007/s00284-002-3684-y.
Oany, A. R., Pervin, T., Mia, M., Hossain, M., Shahnaij, M., Mahmud, S., & Kibria, K. K. (2017). Vaccinomics approach for designing potential peptide vaccine by targeting Shigella spp. serine protease autotransporter subfamily protein SigA. Journal Of Immunology Research, 2017(1), 6412353. https://doi.org/10.1155/2017/6412353.
World Health Organization. (2005). Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1 (ISBN 924159330X). Geneva: WHO.
Philpott, D. J., Edgeworth, J. D., & Sansonetti, P. J. (2000). The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355(1397), 575-586. https://doi.org/10.1098/rstb.2000.0599.
Reisch, C. R., & Prather, K. L. (2015). The no-SCAR (S carless C as9 A ssisted R ecombineering) system for genome editing in Escherichia coli. Scientific Reports, 5(1), 15096. https://doi.org/10.1038/srep15096.
Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L., & Corn, J. E. (2016). Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology, 34(3), 339-344. https://doi.org/10.1038/nbt.3481.
Rozwandowicz, M., Brouwer, M., Fischer, J., Wagenaar, J., Gonzalez-Zorn, B., Guerra, B., Mevius, D., & Hordijk, J. (2018). Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 73(5), 1121-1137. https://doi.org/10.1093/jac/dkx488.
Samare Gholami, A., SASAN, H.A., HASHEMABADI, M., & Ravan, H.. (2020). Design and Construction of Recombinant CRISPR Vector Harboring LRRK2 Gene for Parkinson's Disease. JOURNAL OF CELL & TISSUE, 10(4 ), 214-225. SID. https://sid.ir/paper/364460/en. (in Persian) 
Schnupf, P., & Sansonetti, P. J. (2019). Shigella pathogenesis: new insights through advanced methodologies. Bacteria and Intracellularity, 15-39. https://doi.org/10.1128/microbiolspec.bai-0023-2019.
Shigella species. (2008). In Foodborne Microbial Pathogens: Mechanisms and Pathogenesis (pp. 253-265). Springer New York .https://doi.org/10.1007/978-0-387-74537-4_15.
Smaill, F. (2000). Antibiotic susceptibility and resistance testing: an overview. Canadian Journal of Gastroenterology and Hepatology, 14(10), 871-875. https://doi.org/10.1155/2000/382415.
Trofa, A. F., Ueno-Olsen, H., Oiwa, R., & Yoshikawa, M. (1999). Dr. Kiyoshi Shiga: discoverer of the dysentery bacillus. Clinical Infectious Diseases, 29(5), 1303-1306. https://doi.org/10.1086/313437.