Combined inhibition of HMG-CoA reductase and the renin-angiotensin system attenuates doxorubicin-induced cardiotoxicity in an albino rat model

Document Type : Research Paper

Authors

1 Alshifaa Hospital, Ninevah Health Directorate, Mosul, Iraq.

2 Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul, Iraq.

10.22103/jab.2025.25469.1722

Abstract

Objective
Doxorubicin-associated cardiotoxicity remains a significant clinical challenge in clinical settings. This study aimed to investigate the synergistic cardioprotective effects of combined simvastatin and losartan against doxorubicin-induced cardiac injury.
Materials and methods
A total of 42 Albino Wistar rats were enrolled in the preset study and subdivided into, control male and female groups (received distilled water orally for 7 days and IP normal saline dose at day 14), doxorubicin male and female groups (received distilled water orally for 13 days and single IP dose of doxorubicin 15mg/kg at day 14), and simvastatin+losartan+doxorubicin male and female groups (received oral simvastatin dose of 10 mg/kg/day and losartan dose of 10mg/kg/day for 13 days and single IP dose of doxorubicin 15 mg/kg at day 14). The sampling for all group were conducted at day 16, including blood collection and tissue harvesting after the animal sacrificed. Initial blood sample collected at day 0 before starting any interventional products. Cardiac injury was assessed through histological examination and biochemical analysis of cardiac biomarkers including tumor necrosis factor-alpha (TNF-α), cardiac troponin (TNNI3), and heart-type fatty acid-binding protein (FABP3).
Results
Histological analysis revealed that combination therapy significantly attenuated doxorubicin-induced cardiac damage, showing only slight vascular congestion compared to severe endocardial congestion, inflammatory cell infiltration, and myocyte necrosis observed in the doxorubicin-only group. The combination therapy group demonstrated localized thin fibrous tissue formation between muscle bundles and mild interstitial edema, suggesting active tissue remodeling and healing processes. Biochemically, control groups maintained stable baseline levels throughout the study (TNF-α: 49.3±2.5 to 48.5±1.2; troponin: 11±0.3 to 11.7±0.5; FABP3: 0.55±0.09 to 0.66±0.09). The combination therapy provided remarkable cardioprotection in both sexes, with male rats showing non-significant changes in TNF-α (56.3±4.1 to 59.4±6.3, p=0.53), troponin (12.2±1 to 11.8±0.9, p=0.22), and FABP3 (0.67±0.1 to 0.74±0.05, p=0.63). Female rats demonstrated similar protection with TNF-α levels (60.9±7.4 to 56.2±11.3, p=0.6), troponin (10.8±0.7 to 11.7±0.8, p=0.1), and FABP3 (0.6±0.11 to 0.68±0.08, p=0.9) remaining within normal ranges.
Conclusions
The combination of simvastatin and losartan demonstrated synergistic cardioprotective effects against doxorubicin-induced cardiotoxicity through dual mechanisms involving statin-mediated pleiotropic protection and angiotensin receptor blockade. This combination therapy preserved cardiac function, prevented elevation of cardiac injury biomarkers, and promoted beneficial tissue remodeling. These findings suggest that simvastatin-losartan combination therapy represents a promising cardioprotective strategy for patients receiving doxorubicin chemotherapy, potentially allowing for optimal oncological treatment while minimizing cardiac complications.

Keywords


Akolkar, G., Bhullar, N., Bews, H., Shaikh, B., Premecz, S., Bordun, K.-A., Cheung, D. Y., Goyal, V., Sharma, A. K., Garber, P., Singal, P. K., & Jassal, D. S. (2015). The role of renin angiotensin system antagonists in the prevention of doxorubicin and trastuzumab induced cardiotoxicity. Cardiovascular Ultrasound, 13(1), 18. https://doi.org/10.1186/s12947-015-0011-x
An, J., Nakajima, T., Kuba, K., & Kimura, A. (2010). Losartan inhibits LPS-induced inflammatory signaling through a PPARγ-dependent mechanism in human THP-1 macrophages. Hypertension Research, 33(8), 831–835. https://doi.org/10.1038/hr.2010.79
Bartlett, J. J., Trivedi, P. C., Yeung, P., Kienesberger, P. C., & Pulinilkunnil, T. (2016). Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochemical Journal, 473(21), 3769–3789. https://doi.org/10.1042/BCJ20160385
Bhasin, V., Vakilpour, A., & Scherrer-Crosbie, M. (2024). Statins for the Primary Prevention of Anthracycline Cardiotoxicity: A Comprehensive Review. Current Oncology Reports, 26(10), 1197–1204. https://doi.org/10.1007/s11912-024-01579-6
Cho, D.-H., Lim, I.-R., Kim, J.-H., Kim, M.-N., Kim, Y.-H., Park, K. H., Park, S.-M., & Shim, W. J. (2020). Protective Effects of Statin and Angiotensin Receptor Blocker in a Rat Model of Doxorubicin- and Trastuzumab-Induced Cardiomyopathy. Journal of the American Society of Echocardiography, 33(10), 1253–1263. https://doi.org/10.1016/j.echo.2020.05.021
Felix, N., Nogueira, P. C., Silva, I. M., Costa, T. A., Campello, C. A., Stecca, C., & Lopes, R. D. (2024). Cardio-protective effects of statins in patients undergoing anthracycline-based chemotherapy: An updated meta-analysis of randomized controlled trials. European Journal of Internal Medicine, 126, 43–48. https://doi.org/10.1016/j.ejim.2024.04.007
Freiwan, M., Kovács, M. G., Kovács, Z. Z. A., Szűcs, G., Dinh, H., Losonczi, R., Siska, A., Kriston, A., Kovács, F., Horváth, P., Földesi, I., Cserni, G., Dux, L., Csont, T., & Sárközy, M. (2022). Investigation of the Antiremodeling Effects of Losartan, Mirabegron and Their Combination on the Development of Doxorubicin-Induced Chronic Cardiotoxicity in a Rat Model. International Journal of Molecular Sciences, 23(4), 2201. https://doi.org/10.3390/ijms23042201
Gurlek, A., Kilickap, M., Dincer, I., Dandachi, R., Tutkak, H., & Oral, D. (2001). Effect of Losartan on Circulating TNF Levels and Left Ventricular Systolic Performance in Patients with Heart Failure. European Journal of Cardiovascular Prevention & Rehabilitation, 8(5), 279–282. https://doi.org/10.1177/174182670100800506
Hadi NR & Yousif FG. (2013). The effect of Simvastatin in attenuation of Myocardial Ischemia/Reperfusion injury. Kufa Journal For Veterinary Medical Sciences., 4(2), 8–17.
Hamaamin, K. S., & Aziz, T. A. (2022). Doxorubicin-Induced Cardiotoxicity: Mechanisms and Management. Al-Rafidain Journal of Medical Sciences ( ISSN: 2789-3219 ), 3, 87–97. https://doi.org/10.54133/ajms.v3i.90
Ibrahim, M. A., Ashour, O. M., Ibrahim, Y. F., EL-Bitar, H. I., Gomaa, W., & Abdel-Rahim, S. R. (2009). Angiotensin-converting enzyme inhibition and angiotensin AT1-receptor antagonism equally improve doxorubicin-induced cardiotoxicity and nephrotoxicity. Pharmacological Research, 60(5), 373–381. https://doi.org/10.1016/j.phrs.2009.05.007
Iqbal, M., Dubey, K., Anwer, T., Ashish, A., & Pillai, K. K. (2008). Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacological Reports: PR, 60(3), 382–390.
Kim, H. A., Kim, K. C., Lee, H., & Hong, Y. M. (2023). Losartan Reduces Remodeling and Apoptosis in an Adriamycin-Induced Cardiomyopathy Rat Model. Journal of Chest Surgery, 56(5), 295–303. https://doi.org/10.5090/jcs.23.044
Lemmens, K., Segers, V. F. M., Demolder, M., & De Keulenaer, G. W. (2006). Role of Neuregulin-1/ErbB2 Signaling in Endothelium-Cardiomyocyte Cross-talk. Journal of Biological Chemistry, 281(28), 19469–19477. https://doi.org/10.1074/jbc.M600399200
Lingamsetty, S. S. P., Kritya, M., Huang, W., Fatima, S. R., Gewehr, D. M., Doma, M., Pastrana, S. H., Hemdanieh, M., Naji, Z., Kuhar, K., & Martignoni, F. (2024). Cardioprotective role of statins in breast cancer patients treated with anthracyclines and/or trastuzumab: A systematic review and meta-analysis. European Heart Journal, 45(Supplement_1), ehae666.3218. https://doi.org/10.1093/eurheartj/ehae666.3218
Olorundare, O. E., Adeneye, A. A., Akinsola, A. O., Ajayi, A. M., Agede, O. A., Soyemi, S. S., Mgbehoma, A. I., Okoye, I. I., Albrecht, R. M., Ntambi, J. M., & Crooks, P. A. (2021). Therapeutic Potentials of Selected Antihypertensive Agents and Their Fixed-Dose Combinations Against Trastuzumab-Mediated Cardiotoxicity. Frontiers in Pharmacology, 11, 610331. https://doi.org/10.3389/fphar.2020.610331
Pecoraro, M., Marzocco, S., Belvedere, R., Petrella, A., Franceschelli, S., & Popolo, A. (2023). Simvastatin Reduces Doxorubicin-Induced Cardiotoxicity: Effects beyond Its Antioxidant Activity. International Journal of Molecular Sciences, 24(8), 7573. https://doi.org/10.3390/ijms24087573
Pinter, M., Kwanten, W. J., & Jain, R. K. (2018). Renin–Angiotensin System Inhibitors to Mitigate Cancer Treatment–Related Adverse Events. Clinical Cancer Research, 24(16), 3803–3812. https://doi.org/10.1158/1078-0432.CCR-18-0236
Safra, T., Muggia, F., Jeffers, S., Tsao-Wei, D. D., Groshen, S., Lyass, O., Henderson, R., Berry, G., & Gabizon, A. (2000). Pegylated liposomal doxorubicin (doxil): Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Annals of Oncology, 11(8), 1029–1034. https://doi.org/10.1023/A:1008365716693
Saravi, B., Li, Z., Pfannkuche, J., Wystrach, L., Häckel, S., E. Albers, C., Grad, S., Alini, M., Richards, R. G., Lang, C., Südkamp, N., Schmal, H., & Lang, G. (2021). Angiotensin II Type 1 Receptor Antagonist Losartan Inhibits TNF-α-Induced Inflammation and Degeneration Processes in Human Nucleus Pulposus Cells. Applied Sciences, 11(1), 417. https://doi.org/10.3390/app11010417
Sinha, S., Kumar, B., Prasad, C., Chauhan, S., & Kumar, M. (2025). Emerging Research and Future Directions on Doxorubicin: A Snapshot. Asian Pacific Journal of Cancer Prevention, 26(1), 5–15. https://doi.org/10.31557/APJCP.2025.26.1.5
Tian, Z., Yang, Y., Yang, Y., Zhang, F., Li, P., Wang, J., Yang, J., Zhang, P., Yao, W., & Wang, X. (2020). High cumulative doxorubicin dose for advanced soft tissue sarcoma. BMC Cancer, 20(1), 1139. https://doi.org/10.1186/s12885-020-07663-x
Zablocki, D., & Sadoshima, J. (2013). Angiotensin II and Oxidative Stress in the Failing Heart. Antioxidants & Redox Signaling, 19(10), 1095–1109. https://doi.org/10.1089/ars.2012.4588