Bacillus subtilis and its role in biological control of plant pathogens

Document Type : Research Paper

Authors

Al-Mussaib Technical College, Al-Furat Al-Awsat Technical University, 51009 Babylon, Iraq.

10.22103/jab.2025.25589.1736

Abstract

Objective
The increasing request for sustainable agriculture and reduced chemical pesticide apply has driven interest in eco-friendly alternatives to control plant pathogens. Among biological agents, Bacillus subtilis has emerged as a hopeful biocontrol agent due to its diverse mechanisms of action, containing antibiotic production, induction of systemic resistance in plants, and plant growth promotion. This review aims to examine the biological and ecological characteristics of B. subtilis, its mechanisms in suppressing plant pathogens, and summarize recent research on its effectiveness as a biocontrol agent.
Materials and Methods
This review synthesized results from a broad range of peer-reviewed investigations, field experiments, and laboratory trials centralized on the applying of B. subtilis against fungal, bacterial, and viral plant pathogens. Key mechanisms of action were analyzed, containing rhizosphere colonization, antibiotic production, induction of systemic resistance (ISR), and growth-promoting traits. Specific case investigations and commercial applications were reviewed to prepare a comprehensive perspective on the organism’s potential and limitations in integrated pest management programs.
Results
Bacillus subtilis demonstrated high effectiveness in suppressing major plant pathogens like Fusarium spp., Rhizoctonia solani, Phytophthora infestans, and Ralstonia solanacearum through multiple synergistic mechanisms. The bacterium generates over 66 known antibiotics (e.g., surfactin, fengycin, subtilin), hydrolytic enzymes like chitinase and β-1,3-glucanase, and forms robust biofilms in the rhizosphere, enhancing its colonization capability. ISR triggered by B. subtilis involves improved expression of defense-related enzymes and hormone pathways, notably jasmonic acid and ethylene. Furthermore, B. subtilis enhances nutrient uptake, nitrogen fixation, and stress resilience in plants. Field investigations and commercial formulations (e.g., Kodiak, Serenade, Subtilex) affirm its effectiveness under varied environmental conditions. The reviewed evidence supports its broad-spectrum antifungal and plant growth-promoting effects.
Conclusions
Bacillus subtilis shows a powerful, environmentally safe tool for the biological control of plant pathogens and the enhancement of crop productivity. Its multifaceted role in disease suppression, plant defense activation, and soil health improvement positions it as a key component of sustainable agriculture. Adoption of B. subtilis-based biocontrol products aligns with global goals for reducing chemical pesticide reliance, promoting organic farming, and achieving long-term agricultural sustainability without adverse ecological or health effects.

Keywords


Abdelaziz, A. M., Hashem, A. H., El-Sayyad, G. S., El-Wakil, D. A., Selim, S., Alkhalifah, D. H. M., & Attia, M. S. (2023). Biocontrol of soil-borne diseases by plant growth-promoting rhizobacteria. Tropical Plant Pathology, 48(2), 105–127. https://doi.org/10.1007/s40858-022-00544-7
Akhtar, M. S., Shakeel, U., & Siddiqui, Z. A. (2010). Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes, and Rhizobium spp. on lentil. Turkish Journal of Biology, 34(1), 1–7. https://doi.org/10.3906/biy-0809-12
Akinsemolu, A. A., Onyeaka, H., Odion, S., & Adebanjo, I. (2023). Exploring Bacillus subtilis: Ecology, biotechnological applications, and future prospects. Journal of Basic Microbiology, 64(6), Article 2300614. https://doi.org/10.1002/jobm.202300614
Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: The European situation. European Journal of Plant Pathology, 114(3), 329–341. https://doi.org/10.1007/s10658-005-0233-0
Alina, S. O., Constantinescu, F., & Petruta, C. C. (2015). Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Romanian Biotechnological Letters, 20(5), 10737–10750. https://rombio.unibuc.ro/wp-content/uploads/2022/05/20-5-1.pdf
Alippi, A., & Monaco, C. (1994). Antagonismo in vitro de especies de Bacillus contra Sclerotium rolfsii y Fusarium solani. Revista de la Facultad de Agronomía, 70(1), 91–95. https://sedici.unlp.edu.ar/handle/10915/118307
Alshawi, H. A. A., Haider Abed Ali, H. A. A., & Al-Shebly, H. A. A. (2024). In vitro antibacterial activity of secondary metabolite crude extracts from Aspergillus fumigatus isolated from soil of Bahar Al-Najaf region, Najaf, Iraq. AIP Conference Proceedings, 3092(1), Article 020005. https://doi.org/10.1063/5.0199691
Arguelles-Arias, A., Ongena, M., Devreese, B., Terrak, M., Joris, B., & Fickers, P. (2013). Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS ONE, 8(12), Article e83037. https://doi.org/10.1371/journal.pone.0083037
Asaka, O., & Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology, 62(11), 4081–4085. https://doi.org/10.1128/aem.62.11.4081-4085.1996
Bochow, H., & Gantcheva, K. (1995). Soil introductions of Bacillus subtilis as biocontrol agent and its population and activity dynamic. Acta Horticulturae, (382), 164–172. https://doi.org/10.17660/ActaHortic.1995.382.17
Brill, W. J. (1981). Agricultural microbiology. Scientific American, 245(3), 198–215. https://www.jstor.org/stable/24964565
Chagas Junior, A. F., Braga Junior, G. M., Martins, A. L. L., Chagas, L. F. B., Miller, L. de O., & Bezerra, A. C. C. (2022). Bacillus subtilis Bs10 as an efficient inoculant for growth promotion in soybean plants. Semina: Ciências Agrárias, 43(4), 1769–1786. https://doi.org/10.5433/1679-0359.2022v43n4p1769
Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
Crawford, D. L., Lynch, J. M., Whipps, J. M., & Ousley, M. A. (1993). Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Applied and Environmental Microbiology, 59(11), 3899–3905. https://doi.org/10.1128/aem.59.11.3899-3905.1993
Cui, Y., Meng, W., He, F., Chen, Z., Liu, H., & Li, D. (2025). Heat-killed Bacillus subtilis concerning broilers’ performance, cecal architecture, and microbiota. Frontiers in Microbiology, 16, Article 1606352. https://doi.org/10.3389/fmicb.2025.1606352
Elisashvili, V., Kachlishvili, E., & Chikindas, M. L. (2019). Recent advances in the physiology of spore formation for Bacillus probiotic production. Probiotics and Antimicrobial Proteins, 11(3), 731–747. https://doi.org/10.1007/s12602-018-9492-x
Errington, J., & van der Aart, L. T. (2020). Microbe profile: Bacillus subtilis: Model organism for cellular development, and industrial workhorse. Microbiology, 166(5), 425–427. https://doi.org/10.1099/mic.0.000922
Etesami, H., Jeong, B. R., & Glick, B. R. (2023). Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 126, Article 102048. https://doi.org/10.1016/j.pmpp.2023.102048
Gao, X., Ma, Q., Zhao, L., Lei, Y., & Shan, Y. (2011). Isolation of Bacillus subtilis: Screening for aflatoxins B1, M1, and G1 detoxification. European Food Research and Technology, 232(6), 957–962. https://doi.org/10.1007/s00217-011-1463-3
Garcia, J. L., Probanza, A., Ramos, B., & Mañero, F. J. G. (2001). Genetic variability of rhizobacteria from wild populations of four Lupinus species based on PCR-RAPDs. Journal of Plant Nutrition and Soil Science, 164(1), 1–7. https://doi.org/10.1002/1522-2624(200102)164:1<1::AID-JPLN1>3.0.CO;2-L
García-Gutiérrez, M. S., Ortega-Álvaro, A., Busquets-García, A., Pérez-Ortiz, J. M., Caltana, L., Ricatti, M. J., Brusco, A., Maldonado, R., & Manzanares, J. (2013). Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology, 73, 388–396. https://doi.org/10.1016/j.neuropharm.2013.05.034
Hansel, J., Saville, A. C., & Ristaino, J. B. (2024). Evaluation of a formulation of Bacillus subtilis for control of Phytophthora blight of bell pepper. Plant Disease, 108(4), 1014–1024. https://doi.org/10.1094/PDIS-04-23-0807-RE
Hashem, A., Tabassum, B., & Fathi Abd Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
Hemalatha, A. S., & Shanthi, S. (2010). In vitro characterization of bacteriocin producing Bacillus subtilis from milk samples. African Journal of Microbiology Research, 4(19), 2004–2010. https://academicjournals.org/article/article1380363829_Hemalatha%20and%20Shanthi.pdf
Jan, F., Arshad, H., Ahad, M., Jamal, A., & Smith, D. L. (2023). In vitro assessment of Bacillus subtilis FJ3 affirms its biocontrol and plant growth promoting potential. Frontiers in Plant Science, 14, Article 1205894. https://doi.org/10.3389/fpls.2023.1205894
Johansson, P. M., Johansson, L., & Gerhardson, B. (2003). Suppression of wheat-seedling diseases caused by Fusarium culmorum and Microdochium nivale using bacterial seed treatment. Plant Pathology, 52(2), 219–227. https://doi.org/10.1046/j.1365-3059.2003.00815.x
Jones, D. M. (1983). A colour atlas of Bacillus species. Journal of Clinical Pathology, 36(10), 1205. https://pmc.ncbi.nlm.nih.gov/articles/PMC498519/
Kai, M. (2020). Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates. Frontiers in Microbiology, 11, Article 559. https://doi.org/10.3389/fmicb.2020.00559
Khan, A. R., Mustafa, A., Hyder, S., Valipour, M., Rizvi, Z. F., Gondal, A. S., Yousuf, Z., Iqbal, R., & Daraz, U. (2022). Bacillus spp. as bioagents: Uses and application for sustainable agriculture. Biology, 11(12), Article 1763. https://doi.org/10.3390/biology11121763
Kinsella, K., Schulthess, C. P., Morris, T. F., & Stuart, J. D. (2009). Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biology and Biochemistry, 41(2), 374–379. https://doi.org/10.1016/j.soilbio.2008.11.019
Kloepper, J. W., Ryu, C.-M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
Kumar, K. V. K., Yellareddygari, S. K., Reddy, M. S., Kloepper, J. W., Lawrence, K. S., Miller, M. E., Sudini, H., Reddy, E. C. S., Zhou, X. G., & Groth, D. E. (2013). Ultrastructural studies on the interaction between Bacillus subtilis MBI 600 (Integral) and the rice sheath blight pathogen, Rhizoctonia solani. African Journal of Microbiology Research, 7(19), 2078–2086. https://oar.icrisat.org/7381/
Mahaffee, W. F., & Kloepper, J. W. (1997). Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microbial Ecology, 34(3), 210–223. https://doi.org/10.1007/s002489900050
Matloob, A. A. H. (2019). Efficiency of Trichoderma spp. against some pathogenic fungi causing broad bean root rot disease. Journal of Physics: Conference Series, 1294(9), Article 092003. https://doi.org/10.1088/1742-6596/1294/9/092003
Matloob, A. A. H., & Al-Baldawy, M. S. M. (2020). The effects of organic fertilizer complemented by addition of biological control agents on Rhizoctonia solani Kühn causing eggplant root rot disease. IOP Conference Series: Earth and Environmental Science, 553(1), Article 012003. https://doi.org/10.1088/1755-1315/553/1/012003
Montealegre, J. R., Reyes, R., Pérez, L. M., Herrera, R., Silva, P., & Besoain, X. A. (2003). Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology, 6(2), 115–127. https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v6n2-8
Morikawa, M. (2006). Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. Journal of Bioscience and Bioengineering, 101(1), 1–8. https://doi.org/10.1263/jbb.101.1
Muhammad, S., & Amusa, N. A. (2003). In-vitro inhibition of growth of some seedling blight inducing pathogens by compost-inhabiting microbes. African Journal of Biotechnology, 2(6), 161–164. https://academicjournals.org/journal/AJB/article-abstract/602FA2E9223
Navarre, W. W., & Schneewind, O. (1999). Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiology and Molecular Biology Reviews, 63(1), 174–229. https://doi.org/10.1128/MMBR.63.1.174-229.1999
Risanti, R., Hindersah, R., Fitriatin, B. N., Suryatmana, P., Maksum, I. P., Setiawati, M. R., Hanindipto, F. A., & Nugraha, G. B. (2025). Exploring the Bacillus from vegetable rhizosphere for plant growth. Journal of Ecological Engineering, 26(1), 109–120. https://doi.org/10.12911/22998993/195286
Rooney, A. P., Price, N. P., Ehrhardt, C., Swezey, J. L., & Bannan, J. D. (2009). Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 59(10), 2429–2436. https://doi.org/10.1099/ijs.0.009126-0
Schallmey, M., Singh, A., & Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50(1), 1–17. https://doi.org/10.1139/w03-076
Schleifer, K. H., & Kandler, O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews, 36(4), 407–477. https://doi.org/10.1128/br.36.4.407-477.1972
Sorokulova, I. (2013). Modern status and perspectives of Bacillus bacteria as probiotics. Journal of Probiotics & Health, 1(4), Article e106. https://doi.org/10.4172/2329-8901.1000e106
Sun, Y., Su, Y., Meng, Z., Zhang, J., Zheng, L., Miao, S., Qin, D., Ruan, Y., Wu, Y., Xiong, L., Yan, X., Dong, Z., Cheng, P., Shao, M., & Yu, G. (2023). Biocontrol of bacterial wilt disease in tomato using Bacillus subtilis strain R31. Frontiers in Microbiology, 14, Article 1281381. https://doi.org/10.3389/fmicb.2023.1281381
van Dijl, J. M., & Hecker, M. (2013). Bacillus subtilis: From soil bacterium to super-secreting cell factory. Microbial Cell Factories, 12, Article 3. https://doi.org/10.1186/1475-2859-12-3
Wang, X. Q., Zhao, D. L., Shen, L. L., Jing, C. L., & Zhang, C. S. (2018). Application and mechanisms of Bacillus subtilis in biological control of plant disease. In V. S. Meena (Ed.), Role of rhizospheric microbes in soil (pp. 225–250). Springer. https://doi.org/10.1007/978-981-10-8402-7_9
Yao, A. V., Karimov, S., Bochow, H., Boturov, U., Sanginboy, S., & Sharipov, A. (2006). Effect of FZB24 Bacillus subtilis as biofertilizer on cotton yields in field tests. Archives of Phytopathology and Plant Protection, 39(4), 323–328. https://doi.org/10.1080/03235400600655347
Zhang, N., Wang, Z., Shao, J., Xu, Z., Liu, Y., Xun, W., Miao, Y., Shen, Q., & Zhang, R. (2023). Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture. Microbial Biotechnology, 16(12), 2250–2263. https://doi.org/10.1111/1751-7915.14348
Zhang, S., Reddy, M. S., & Joseph, W. K. (2002). Development of assays for assessing induced systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control, 23(1), 79–86. https://doi.org/10.1006/bcon.2001.0992
Zhou, G., Whong, Z., Ong, T., & Chen, B. (2000). Development of a fungus-specific PCR assay for detecting low-level fungi in an indoor environment. Molecular and Cellular Probes, 14(6), 339–348. https://doi.org/10.1006/mcpr.2000.0324