Modern pharmaceutical applications of Eudragit polymers in Hot Melt Extrusion and 3D printing technologies

Document Type : Research Paper

Author

Department of Pharmaceutics, College of Pharmacy, University of Mosul, Mosul, Iraq.

10.22103/jab.2025.25732.1747

Abstract

Objective
The pharmaceutical production environment is increasingly adopting progressive methods like hot-melt extrusion (HME) and three-dimensional (3D) printing to expand personalized, effective, and scalable drug delivery systems. Both techniques rely heavily on the excipient Eudragit (EUD), which represents a broad family of methacrylate-based polymers. This review targets to supply a wide account of the application of EUD polymers in HME and 3D printing, with a centralization on their role in controlled drug release systems of sustained, immediate, and aimed types.
Materials and Methods
The review surveys the utilization of numerous grades of EUD, like EPO, RL, RS, L100, S100, and L100-55, in formulation design, process optimization, and drug release mechanisms. The discussion encompasses the evaluation of formulation strategies, processing situations, and post-processing stability. Innovations in recent years, containing smart and functionalized EUD-based systems with mucoadhesive, colon-specific, and theranostic properties, are also examined. Additionally, mechanical characteristics and drug–polymer compatibility are analyzed as critical determinants of successful formulation.
Results
EUD polymers have been demonstrated to support a broad spectrum of drug delivery platforms and dosage forms, proposing versatility and adaptability to pharmaceutical processing. Case studies and recent expansions show the capability of EUD to enable controlled release mechanisms, while also addressing particular therapeutic requirements. Smart functionalization of EUD systems has expanded their potential to include mucoadhesion, site-specific delivery, and diagnostic utilizations. However, challenges stay, containing issues of thermal degradation through processing, insufficient miscibility between drugs and polymers, and sensitivity to moisture. These limitations pose meaningful formulation challenges that must be managed carefully via process-specific and formulation-specific solutions.
Conclusions
This review underscores the central role of EUD polymers in next-generation pharmaceutical manufacturing, exclusively in the context of HME and additive manufacturing. While these polymers hold great promise for enabling progressive drug delivery systems, technical challenges persist, containing drug–polymer miscibility, risk of thermal degradation, and maintenance of post-processing integrity. Addressing these issues is crucial for unlocking the full potential of EUD polymers in future drug expansion. By integrating case studies, formulation strategies, and mechanistic perception, this review supplies a worth resource for researchers and formulators seeking to exploit the adaptability of EUD in modern pharmaceutical utilizations.

Keywords


Ahn, S. H., Lee, H. J., Lee, J.-S., Yoon, H., Chun, W., & Kim, G. H. (2015). A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures. Scientific Reports, 5(1), 13427. https://doi.org/10.1038/srep13427
Alhijjaj, M., Belton, P., & Qi, S. (2016). An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. European Journal of Pharmaceutics and Biopharmaceutics, 108, 111–125. https://doi.org/10.1016/j.ejpb.2016.08.016
Ali, J., Khar, R. K., & Ahuja, A. (1998). Formulation and characterisation of a buccoadhesive erodible tablet for the treatment of oral lesions. Die Pharmazie, 53(5), 329–334. http://europepmc.org/abstract/MED/9631501
Alomari, M., Mohamed, F. H., Basit, A. W., & Gaisford, S. (2015). Personalised dosing: Printing a dose of one’s own medicine. International Journal of Pharmaceutics, 494(2), 568–577. https://doi.org/10.1016/j.ijpharm.2014.12.006
Andrés Real, D., Gagliano, A., Sonsini, N., Wicky, G., Orzan, L., Leonardi, D., & Salomon, C. (2022). Design and optimization of pH-sensitive Eudragit nanoparticles for improved oral delivery of triclabendazole. International Journal of Pharmaceutics, 617, 121594. https://doi.org/10.1016/j.ijpharm.2022.121594
Arafat, B., Qinna, N., Cieszynska, M., Forbes, R. T., & Alhnan, M. A. (2018). Tailored on demand anti-coagulant dosing: An in vitro and in vivo evaluation of 3D printed purpose-designed oral dosage forms. European Journal of Pharmaceutics and Biopharmaceutics, 128, 282–289. https://doi.org/10.1016/j.ejpb.2018.04.010
Bandari, S., Nyavanandi, D., Dumpa, N., & Repka, M. A. (2021). Coupling hot melt extrusion and fused deposition modeling: Critical properties for successful performance. Advanced Drug Delivery Reviews, 172, 52–63. https://doi.org/10.1016/j.addr.2021.02.006
Baumann, J. M., Adam, M. S., & Wood, J. D. (2021). Engineering advances in spray drying for pharmaceuticals. Annual Review of Chemical and Biomolecular Engineering, 12, 217–240. https://doi.org/10.1146/annurev-chembioeng-091720-034106
Beck, R. C. R., Chaves, P. S., Goyanes, A., Vukosavljevic, B., Buanz, A., Windbergs, M., Basit, A. W., & Gaisford, S. (2017). 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. International Journal of Pharmaceutics, 528(1), 268–279. https://doi.org/10.1016/j.ijpharm.2017.05.074
BG, P. K., Mehrotra, S., Marques, S. M., Kumar, L., & Verma, R. (2023). 3D printing in personalized medicines: A focus on applications of the technology. Materials Today Communications, 35, 105875. https://doi.org/10.1016/j.mtcomm.2023.105875
Bhattacharjee, N., Urrios, A., Kang, S., & Folch, A. (2016). The upcoming 3D-printing revolution in microfluidics. Lab on a Chip, 16(10), 1720–1742. https://doi.org/10.1039/C6LC00163G
Bhushan, B., & Caspers, M. (2017). An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, 23(4), 1117–1124. https://doi.org/10.1007/s00542-017-3342-8
Breitenbach, J. (2002). Melt extrusion: From process to drug delivery technology. European Journal of Pharmaceutics and Biopharmaceutics, 54(2), 107–117. https://doi.org/10.1016/S0939-6411(02)00061-9
Bulja, S., Pivit, F., & Doumanis, E. (2017). Dielectric powder loaded coaxial-cavity filters. In 2017 IEEE Radio and Wireless Symposium (RWS) (pp. 117–120). IEEE. https://doi.org/10.1109/RWS.2017.7885962
Cantin, O., Siepmann, F., Willart, J. F., Danede, F., Siepmann, J., & Karrout, Y. (2021). PEO hot melt extrudates for controlled drug delivery: Importance of the type of drug and loading. Journal of Drug Delivery Science and Technology, 61, 102238. https://doi.org/10.1016/j.jddst.2020.102238
Ceballos, A., Cirri, M., Maestrelli, F., Corti, G., & Mura, P. (2005). Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Il Farmaco, 60(11), 913–918. https://doi.org/10.1016/j.farmac.2005.07.002
Censi, R., Gigliobianco, M. R., Casadidio, C., & Di Martino, P. (2018). Hot melt extrusion: Highlighting physicochemical factors to be investigated while designing and optimizing a hot melt extrusion process. Pharmaceutics, 10(3), 89. https://doi.org/10.3390/pharmaceutics10030089
Cetin, M., Atila, A., & Kadioglu, Y. (2010). Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium. AAPS PharmSciTech, 11(3), 1250–1256. https://doi.org/10.1208/s12249-010-9489-6
Ch’Ng, H. S., Park, H., Kelly, P., & Robinson, J. R. (1985). Bioadhesive polymers as platforms for oral controlled drug delivery II: Synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. Journal of Pharmaceutical Sciences, 74(4), 399–405. https://doi.org/10.1002/jps.2600740407
Chai, X., Chai, H., Wang, X., Yang, J., Li, J., Zhao, Y., Cai, W., Tao, T., & Xiang, X. (2017). Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Scientific Reports, 7, 2829. https://doi.org/10.1038/s41598-017-03097-x
Chandak, A. R., & Prasad Verma, P. R. (2010). Eudragit-based transdermal delivery system of pentazocine: Physico-chemical, in vitro and in vivo evaluations. Pharmaceutical Development and Technology, 15(3), 296–304. https://doi.org/10.3109/10837450903188501
Collins, S. P., Storrow, A., Liu, D., et al. (2021). Examining whether a self-care program reduces healthcare use and improves health among patients with acute heart failure—The Guided HF study (Report No. NBK599363). Patient-Centered Outcomes Research Institute (PCORI). https://www.ncbi.nlm.nih.gov/books/NBK599363/ https://doi.org/10.25302/04.2021.AD.140921656
Crowley, M. M., Zhang, F., Repka, M. A., Thumma, S., Upadhye, S. B., Battu, S. K., McGinity, J. W., & Martin, C. (2007). Pharmaceutical applications of hot-melt extrusion: Part I. Drug Development and Industrial Pharmacy, 33(9), 909–926. https://doi.org/10.1080/03639040701498759
Dadbakhsh, S., Verbelen, L., Vandeputte, T., Strobbe, D., Van Puyvelde, P., & Kruth, J.-P. (2016). Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Physics Procedia, 83, 971–980. https://doi.org/10.1016/j.phpro.2016.08.102
Dea-Ayuela, M. A., Rama-Iñiguez, S., Torrado-Santiago, S., & Bolas-Fernandez, F. (2006). Microcapsules formulated in the enteric coating copolymer Eudragit L100 as delivery systems for oral vaccination against infections by gastrointestinal nematode parasites. Journal of Drug Targeting, 14(8), 567–575. https://doi.org/10.1080/10611860600849464
Delf Loveymi, B., Jelvehgari, M., Zakeri-Milani, P., & Valizadeh, H. (2012). Statistical optimization of oral vancomycin-Eudragit RS nanoparticles using response surface methodology. Iranian Journal of Pharmaceutical Research, 11(4), 1001–1012.
Diarra, M., Pourroy, G., Boymond, C., & Muster, D. (2003). Fluoride controlled release tablets for intrabuccal use. Biomaterials, 24(7), 1293–1300. https://doi.org/10.1016/S0142-9612(02)00444-1
dos Santos, J., da Silva, G. S., Velho, M. C., & Beck, R. C. R. (2021). Eudragit®: A versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics, 13(9), Article 1424. https://doi.org/10.3390/pharmaceutics13091424
Duarte, A. R. C., Roy, C., Vega-González, A., Duarte, C. M. M., & Subra-Paternault, P. (2007). Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques. International Journal of Pharmaceutics, 332(1–2), 132–139. https://doi.org/10.1016/j.ijpharm.2006.09.041
Dumpa, N. R., Sarabu, S., Bandari, S., Zhang, F., & Repka, M. A. (2018). Chronotherapeutic drug delivery of ketoprofen and ibuprofen for improved treatment of early morning stiffness in arthritis using hot-melt extrusion technology. AAPS PharmSciTech, 19(6), 2700–2709. https://doi.org/10.1208/s12249-018-1095-z
Dumpa, N., Butreddy, A., Wang, H., Komanduri, N., Bandari, S., & Repka, M. A. (2021). 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. International Journal of Pharmaceutics, 600, Article 120501. https://doi.org/10.1016/j.ijpharm.2021.120501
Emam, M. F., Taha, N. F., Mursi, N. M., & Emara, L. H. (2021). Preparation, characterization and in-vitro/in-vivo evaluation of meloxicam extruded pellets with enhanced bioavailability and stability. Drug Development and Industrial Pharmacy, 47(1), 163–175. https://doi.org/10.1080/03639045.2020.1862175
Evonik Industries. (2023). EUDRAGIT® application guidelines. https://www.evonik.com
Fan, W., Zhang, X., Zhu, W., Zhang, X., & Di, L. (2021). Preparation of curcumin-Eudragit® EPO solid dispersions with gradient temperature through hot-melt extrusion. Molecules, 26(16), Article 4964. https://doi.org/10.3390/molecules26164964
Farkouh, A., Frigo, P., & Czejka, M. (2016). Systemic side effects of eye drops: A pharmacokinetic perspective. Clinical Ophthalmology, 10, 2433–2441. https://doi.org/10.2147/OPTH.S118409
Feng, X., & Zhang, F. (2018). Twin-screw extrusion of sustained-release oral dosage forms and medical implants. Drug Delivery and Translational Research, 8(6), 1694–1713. https://doi.org/10.1007/s13346-017-0461-9
Fina, F. (2020). Fused deposition modeling (FDM) 3D printing of oral modified release dosage forms [Unpublished doctoral dissertation]. University College London. https://discovery.ucl.ac.uk/id/eprint/10107632/1/Thesis%20with%20corrections%20official%2012%20Aug%2020.pdf
Fuenmayor, E., Forde, M., Healy, A. V., Devine, D. M., Lyons, J. G., McConville, C., & Major, I. (2019). Comparison of fused-filament fabrication to direct compression and injection molding in the manufacture of oral tablets. International Journal of Pharmaceutics, 558, 328–340. https://doi.org/10.1016/j.ijpharm.2019.01.013
Gallardo, D., Skalsky, B., & Kleinebudde, P. (2008). Controlled release solid dosage forms using combinations of (meth)acrylate copolymers. Pharmaceutical Development and Technology, 13(5), 413–423. https://doi.org/10.1080/10837450802202098
Gaurkhede, S. G., Wang, C., Di Pasqua, A. J., Zhou, Y., & Deng, J. (2024). 3D printing novel enteric capsule shells for personalized drug delivery. Manufacturing Letters, 41, 891–897. https://doi.org/10.1016/j.mfglet.2024.09.109
Genina, N., Boetker, J. P., Colombo, S., Harmankaya, N., Rantanen, J., & Bohr, A. (2017). Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. Journal of Controlled Release, 268, 40–48. https://doi.org/10.1016/j.jconrel.2017.10.003
Ghebre-Sellassie, I., Martin, C. E., Zhang, F., & DiNunzio, J. (Eds.). (2003). Pharmaceutical extrusion technology. CRC Press. https://doi.org/10.1201/9780203911532
Ghosh, S. (2004). Recent research and development in synthetic polymer-based drug delivery systems. Journal of Chemical Research, 2004(4), 241–246. https://doi.org/10.3184/0308234041209158
Gioumouxouzis, C. I., Chatzitaki, A. T., Karavasili, C., Katsamenis, O. L., Tzetzis, D., Mystiridou, E., Bouropoulos, N., & Fatouros, D. G. (2018). Controlled release of 5-fluorouracil from alginate beads encapsulated in 3D printed pH-responsive solid dosage forms. AAPS PharmSciTech, 19(8), 3362–3375. https://doi.org/10.1208/s12249-018-1084-2
Gioumouxouzis, C. I., Karavasili, C., & Fatouros, D. G. (2019). Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discovery Today, 24(2), 636–643. https://doi.org/10.1016/j.drudis.2018.11.019
Giri, T. K., Badwaik, H., Alexander, A., & Tripathi, D. K. (2010). Solubility enhancement of ibuprofen in the presence of hydrophilic polymer and surfactant. International Journal of Applied Biology and Pharmaceutical Technology, 1(2), 793–800.
Gittard, S. D., Miller, P. R., Jin, C., Martin, T. N., Boehm, R. D., Chisholm, B. J., Stafslien, S. J., Daniels, J. W., Cilz, N., Monteiro-Riviere, N. A., Nasir, A., & Narayan, R. J. (2011). Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. JOM, 63(6), 59–68. https://doi.org/10.1007/s11837-011-0093-3
Goyanes, A., Det-Amornrat, U., Wang, J., Basit, A. W., & Gaisford, S. (2016). 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Journal of Controlled Release, 234, 41–48. https://doi.org/10.1016/j.jconrel.2016.05.034
Goyanes, A., Robles Martinez, P., Buanz, A., Basit, A. W., & Gaisford, S. (2015). Effect of geometry on drug release from 3D printed tablets. International Journal of Pharmaceutics, 494(2), 657–663. https://doi.org/10.1016/j.ijpharm.2015.04.069
Harris, D., & Robinson, J. R. (1992). Drug delivery via the mucous membranes of the oral cavity. Journal of Pharmaceutical Sciences, 81(1), 1–10. https://doi.org/10.1002/jps.2600810102
Heidarpour, F., Mohammadabadi, M. R., Zaidul, I. S. M., Maherani, B., Saari, N., Hamid, A. A., Abas, F., Manap, M. Y. A., & Mozafari, M. R. (2011). Use of prebiotics in oral delivery of bioactive compounds: A nanotechnology perspective. Pharmazie, 66(5), 319-324. https://doi.org/10.1691/ph.2011.0279
Hoogstraate, A. J., Verhoef, J. C., Tuk, B., Pijpers, A., van Leengoed, L. A. M. G., Verheijden, J. H. M., Junginger, H. E., & Boddé, H. E. (1996). Buccal delivery of fluorescein isothiocyanate-dextran 4400 and the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. Journal of Controlled Release, 41(1–2), 77–84. https://doi.org/10.1016/0168-3659(96)01358-2
Hospodiuk, M., Dey, M., Sosnoski, D., & Ozbolat, I. T. (2017). The bioink: A comprehensive review on bioprintable materials. Biotechnology Advances, 35(2), 217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006
Huang, J., Qin, Q., & Wang, J. (2020). A review of stereolithography: Processes and systems. Processes, 8(9), Article 1138. https://doi.org/10.3390/pr8091138
Huang, T.-Y., Sakar, M. S., Mao, A., Petruska, A. J., Qiu, F., Chen, X.-B., Kennedy, S., Mooney, D., & Nelson, B. J. (2015). 3D printed microtransporters: Compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Advanced Materials, 27(42), 6644–6650. https://doi.org/10.1002/adma.201503095
Hwang, H. H., Zhu, W., Victorine, G., Lawrence, N., & Chen, S. (2018). 3D-printing of functional biomedical microdevices via light- and extrusion-based approaches. Small Methods, 2(2), Article 1700277. https://doi.org/10.1002/smtd.201700277
Jablan, J., & Jug, M. (2015). Development of Eudragit® S100 based pH-responsive microspheres of zaleplon by spray-drying: Tailoring the drug release properties. Powder Technology, 283, 334–343. https://doi.org/10.1016/j.powtec.2015.05.045
Jaloud, F., & Alqahtani, S. (2021). Controlled release oral dosage forms using functional additives in hot melt extruded pharmaceuticals. Journal of Pharmaceutical Sciences, 110(12), 3751–3760. https://doi.org/10.1016/j.xphs.2021.08.026
Johnson, C., Chen, B., Bhalla, A., Crowell, E., & Zhang, F. (2025). Elimination of “lag” and “burst” phases in drug release profiles of melt-extruded, PLGA-based intravitreal implants. International Journal of Pharmaceutics, 681, Article 125822. https://doi.org/10.1016/j.ijpharm.2025.125822
Kadian, S. S., & Harikumar, S. L. (2009). Eudragit and its pharmaceutical significance. Pharma Times, 41(10), 17–22. http://www.farmavita.net/component/option,com_remository/Itemid,88/func,fileinfo/id,108/
Kawata, S., Sun, H.-B., Tanaka, T., & Takada, K. (2001). Finer features for functional microdevices. Nature, 412(6848), 697–698. https://doi.org/10.1038/35089130
Keating, A. V., Soto, J., Tuleu, C., Forbes, C., Zhao, M., & Craig, D. Q. M. (2018). Solid state characterisation and taste masking efficiency evaluation of polymer based extrudates of isoniazid for paediatric administration. International Journal of Pharmaceutics, 536(2), 536–546. https://doi.org/10.1016/j.ijpharm.2017.07.008
Kempin, W., Franz, C., Koster, L.-C., Schneider, F., Bogdahn, M., Weitschies, W., & Seidlitz, A. (2017). Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. European Journal of Pharmaceutics and Biopharmaceutics, 115, 84–93. https://doi.org/10.1016/j.ejpb.2017.02.014
Khodaverdi, E., Tekie, F. S. M., Amoli, S. S., & Sadeghi, F. (2012). Comparison of plasticizer effect on thermo-responsive properties of Eudragit RS films. AAPS PharmSciTech, 13(3), 1024–1030. https://doi.org/10.1208/s12249-012-9827-y
Khopade, A. J., & Jain, N. K. (1995). Self assembling nanostructures for sustained ophthalmic drug delivery. Die Pharmazie, 50(12), 812–814.
Kjar, A., & Huang, Y. (2019). Application of micro-scale 3D printing in pharmaceutics. Pharmaceutics, 11(8), Article 390. https://doi.org/10.3390/pharmaceutics11080390
Kohlgrüber, K. (2007). Co-rotating twin-screw extruders. Carl Hanser Verlag. https://doi.org/10.3139/9783446433410.fm
Korte, C., & Quodbach, J. (2018). Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharmaceutical Development and Technology, 23(10), 1117–1127. https://doi.org/10.1080/10837450.2018.1433208
Koutsamanis, I., Spoerk, M., Arbeiter, F., Eder, S., & Roblegg, E. (2020). Development of porous polyurethane implants manufactured via hot-melt extrusion. Polymers, 12(12), Article 2950. https://doi.org/10.3390/polym12122950
Langer, R. (1980). Polymeric delivery systems for controlled drug release. Chemical Engineering Communications, 6(1–3), 1–48. https://doi.org/10.1080/00986448008912519
Lee, W.-J., Cha, S., Shin, M., Jung, M., Islam, M. A., Cho, C., & Yoo, H. S. (2012). Efficacy of thiolated Eudragit microspheres as an oral vaccine delivery system to induce mucosal immunity against enterotoxigenic Escherichia coli in mice. European Journal of Pharmaceutics and Biopharmaceutics, 81(1), 43–48. https://doi.org/10.1016/j.ejpb.2012.01.010
Liu, J., Li, L., Suo, H., Yan, M., Yin, J., & Fu, J. (2019). 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Materials & Design, 171, Article 107708. https://doi.org/10.1016/j.matdes.2019.107708
Loukus, J. E., Halonen, A. C., & Gupta, M. (2004). Elongational flow in multiple screw extruders. Annual Technical Conference - ANTEC, Conference Proceedings, 1, 133–137.
Madhav, N. V. S., Shakya, A. K., Shakya, P., & Singh, K. (2009). Orotransmucosal drug delivery systems: A review. Journal of Controlled Release, 140(1), 2–11. https://doi.org/10.1016/j.jconrel.2009.07.016
Malá, R., Jirásková, J., & Rabišková, M. (2014). Vodné disperze polymerů v obalech řídících uvolňování léčiv. Chemické Listy, 108(11), 1046–1052.
Małolepsza-Jarmołowska, K., Kubis, A. A., & Hirnle, L. (2003). Studies on gynaecological hydrophilic lactic acid preparations. Part 5: The use of Eudragit® E-100 as lactic acid carrier in intravaginal tablets. Die Pharmazie, 58(4), 260–262.
Manapat, J. Z., Chen, Q., Ye, P., & Advincula, R. C. (2017). 3D printing of polymer nanocomposites via stereolithography. Macromolecular Materials and Engineering, 302(9), Article 1600553. https://doi.org/10.1002/mame.201600553
Martin, C. (2013). Twin screw extrusion for pharmaceutical processes. In M. A. Repka, N. Langley, & J. DiNunzio (Eds.), Melt extrusion: Materials, technology and drug product design (pp. 47–79). Springer. https://doi.org/10.1007/978-1-4614-8432-5_2
Maruo, S., Nakamura, O., & Kawata, S. (1997). Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters, 22(2), 132–134. https://doi.org/10.1364/OL.22.000132
Mazzoli, A. (2013). Selective laser sintering in biomedical engineering. Medical & Biological Engineering & Computing, 51(3), 245–256. https://doi.org/10.1007/s11517-012-1001-x
Mohammadabadi, M. R., & Mozafari, M. R. (2018). Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. Journal of Drug Delivery Science and Technology, 47(1), 445–453. https://doi.org/10.1016/j.jddst.2018.08.019
Momoh, M. A., Kenechukwu, F. C., Adedokun, M. O., Odo, C. E., & Attama, A. A. (2014). Pharmacodynamics of diclofenac from novel Eudragit entrapped microspheres. Drug Delivery, 21(3), 193–203. https://doi.org/10.3109/10717544.2013.834608
Mortazavi, S. M., Mohammadabadi, M. R., & Mozafari, M. R. (2005). Applications and in vivo behaviour of lipid vesicles. In M. R. Mozafari (Ed.), Nanoliposomes: From fundamentals to recent developments (pp. 67–76).
Mulligan, R. C. (1993). The basic science of gene therapy. Science, 260(5110), 926–932. https://doi.org/10.1126/science.8493530
Nadernezhad, A., Khani, N., Skvortsov, G. A., Toprakhisar, B., Bakirci, E., Menceloglu, Y., Unal, S., & Koc, B. (2016). Multifunctional 3D printing of heterogeneous hydrogel structures. Scientific Reports, 6, Article 33178. https://doi.org/10.1038/srep33178
Nair, M. K., & Chien, Y. W. (1996). Development of anticandidal delivery systems: (II) Mucoadhesive devices for prolonged drug delivery in the oral cavity. Drug Development and Industrial Pharmacy, 22(3), 243–253. https://doi.org/10.3109/03639049609058568
Naiserová, M., Kubová, K., Vysloužil, J., Bernatoniene, J., Brokalakis, I., & Vetchý, D. (2019). (Meth)acrylate copolymers of Eudragit® type in oral tablet technology. Česká a Slovenská Farmacie, 68(5), 183–197. https://pubmed.ncbi.nlm.nih.gov/31896262/
Narang, N., & Sharma, J. (2011). Sublingual mucosa as a route for systemic drug delivery. International Journal of Pharmacy and Pharmaceutical Sciences, 3(Suppl. 2), 18–22.
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
Nikam, A., Sahoo, P. R., Musale, S., Pagar, R. R., Paiva-Santos, A. C., & Giram, P. S. (2023). A systematic overview of Eudragit® based copolymer for smart healthcare. Pharmaceutics, 15(2), Article 587. https://doi.org/10.3390/pharmaceutics15020587
Nollenberger, K., & Albers, J. (2013). Poly(meth)acrylate-based coatings. International Journal of Pharmaceutics, 457(2), 461–469. https://doi.org/10.1016/j.ijpharm.2013.09.029
Pardeike, J., Strohmeier, D. M., Schrödl, N., Voura, C., Gruber, M., Khinast, J. G., & Zimmer, A. (2011). Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. International Journal of Pharmaceutics, 420(1), 93–100. https://doi.org/10.1016/j.ijpharm.2011.08.033
Patel, I., Ajaykumar, T., & Srivastav, B. (2011). Eudragit a versatile polymer: A review. Pharmacologyonline, 1, 152–164. https://www.pharmaresearchlibrary.com/wp-content/uploads/2013/08/PRL2013-IJCPS-1783.pdf
Patil, H., Tiwari, R. V., & Repka, M. A. (2016). Hot-melt extrusion: From theory to application in pharmaceutical formulation. AAPS PharmSciTech, 17(1), 20–42. https://doi.org/10.1208/s12249-015-0360-7
Patil, H., Vemula, S. K., Narala, S., Lakkala, P., Munnangi, S. R., Narala, N., Jara, M. O., Williams, R. O., Terefe, H., & Repka, M. A. (2024). Hot-melt extrusion: From theory to application in pharmaceutical formulation—Where are we now? AAPS PharmSciTech, 25(2), Article 34. https://doi.org/10.1208/s12249-024-02749-2
Patki, M., Palekar, S., Nukala, P. K., Vartak, R., & Patel, K. (2020). Overdose and alcohol sensitive immediate release system (OASIS) for deterring accidental overdose or abuse of drugs. AAPS PharmSciTech, 22(1), Article 9. https://doi.org/10.1208/s12249-020-01879-7
Patra, C. N., Priya, R., Swain, S., Kumar Jena, G., Panigrahi, K. C., & Ghose, D. (2017). Pharmaceutical significance of Eudragit: A review. Future Journal of Pharmaceutical Sciences, 3(1), 33–45. https://doi.org/10.1016/j.fjps.2017.02.001
Pereira, G. G., Figueiredo, S., Fernandes, A. I., & Pinto, J. F. (2020). Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics, 12(9), Article 795. https://doi.org/10.3390/pharmaceutics12090795
Pietrzak, K., Isreb, A., & Alhnan, M. A. (2015). A flexible-dose dispenser for immediate and extended release 3D printed tablets. European Journal of Pharmaceutics and Biopharmaceutics, 96, 380–387. https://doi.org/10.1016/j.ejpb.2015.07.027
Quinteros, D. A., Manzo, R. H., & Allemandi, D. A. (2010). Design of a colonic delivery system based on cationic polymethacrylate (Eudragit E100)-mesalamine complexes. Drug Delivery, 17(4), 208–213. https://doi.org/10.3109/10717541003667806
Regenfuss, P., Streek, A., Hartwig, L., Klötzer, S., Brabant, T., Horn, M., Ebert, R., & Exner, H. (2007). Principles of laser micro sintering. Rapid Prototyping Journal, 13(4), 204–212. https://doi.org/10.1108/13552540710776151
Repka, M. A., Bandari, S., Kallakunta, V. R., Vo, A. Q., McFall, H., Pimparade, M. B., & Bhagurkar, A. M. (2018). Melt extrusion with poorly soluble drugs—An integrated review. International Journal of Pharmaceutics, 535(1–2), 68–85. https://doi.org/10.1016/j.ijpharm.2017.10.056
Repka, M. A., Battu, S. K., Upadhye, S. B., Thumma, S., Crowley, M. M., Zhang, F., Martin, C., & McGinity, J. W. (2007). Pharmaceutical applications of hot-melt extrusion: Part II. Drug Development and Industrial Pharmacy, 33(10), 1043–1057. https://doi.org/10.1080/03639040701525627
Repka, M. A., Majumdar, S., Kumar Battu, S., Srirangam, R., & Upadhye, S. B. (2008). Applications of hot-melt extrusion for drug delivery. Expert Opinion on Drug Delivery, 5(12), 1357–1376. https://doi.org/10.1517/17425240802583421
Sadia, M., Sośnicka, A., Arafat, B., Isreb, A., Ahmed, W., Kelarakis, A., & Alhnan, M. A. (2016). Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. International Journal of Pharmaceutics, 513(1–2), 659–668. https://doi.org/10.1016/j.ijpharm.2016.09.050
Shakya, P., Madhav, N. V. S., Shakya, A. K., & Singh, K. (2011). Palatal mucosa as a route for systemic drug delivery: A review. Journal of Controlled Release, 151(1), 2–9. https://doi.org/10.1016/j.jconrel.2010.11.003
Shojaie, F., Ferrero, C., & Caraballo, I. (2023). Development of 3D-printed bicompartmental devices by dual-nozzle fused deposition modeling (FDM) for colon-specific drug delivery. Pharmaceutics, 15(9), Article 2362. https://doi.org/10.3390/pharmaceutics15092362
Singh, S., Neelam, Arora, S., & Singla, Y. (2015). An overview of multifaceted significance of Eudragit polymers in drug delivery systems. Asian Journal of Pharmaceutical and Clinical Research, 8(5), 1–6.
Stansbury, J. W., & Idacavage, M. J. (2016). 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials, 32(1), 54–64. https://doi.org/10.1016/j.dental.2015.09.018
Tambe, S., Jain, D., Agarwal, Y., & Amin, P. (2021). Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications. Journal of Drug Delivery Science and Technology, 63, Article 102452. https://doi.org/10.1016/j.jddst.2021.102452
Tan, D. K., Maniruzzaman, M., & Nokhodchi, A. (2018). Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery. Pharmaceutics, 10(4), Article 203. https://doi.org/10.3390/pharmaceutics10040203
Tang, J., Xu, N., Ji, H., Liu, H., Wang, Z., & Wu, L. (2011). Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. International Journal of Nanomedicine, 6, 2429–2435. https://doi.org/10.2147/IJN.S24185
Thakral, S., Thakral, N. K., & Majumdar, D. K. (2013). Eudragit®: A technology evaluation. Expert Opinion on Drug Delivery, 10(1), 131–149. https://doi.org/10.1517/17425247.2013.736962
Tran, P. H. L., Lee, B.-J., & Tran, T. T. D. (2021). Recent studies on the processes and formulation impacts in the development of solid dispersions by hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 164, 13–19. https://doi.org/10.1016/j.ejpb.2021.04.009
Trenfield, S. J., Goyanes, A., Telford, R., Wilsdon, D., Rowland, M., Gaisford, S., & Basit, A. W. (2018). 3D printed drug products: Non-destructive dose verification using a rapid point-and-shoot approach. International Journal of Pharmaceutics, 549(1–2), 283–292. https://doi.org/10.1016/j.ijpharm.2018.08.002
Ursan, I. D., Chiu, L., & Pierce, A. (2013). Three-dimensional drug printing: A structured review. Journal of the American Pharmacists Association, 53(2), 136–144. https://doi.org/10.1331/JAPhA.2013.12217
Vasileiou, K., Vysloužil, J., Pavelková, M., Vysloužil, J., & Kubová, K. (2017). The size-reduced Eudragit® RS microparticles prepared by solvent evaporation method—Monitoring the effect of selected variables on tested parameters. Česká a Slovenská Farmacie, 66(5), 274–280.
Verma, P., Gupta, R. N., Jha, A. K., & Pandey, R. (2013). Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide. Drug Delivery, 20(7), 269–276. https://doi.org/10.3109/10717544.2013.834417
Verstraete, G., Samaro, A., Grymonpré, W., Vanhoorne, V., Van Snick, B., Boone, M. N., Hellemans, T., Van Hoorebeke, L., Remon, J. P., & Vervaet, C. (2018). 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. International Journal of Pharmaceutics, 536(1), 318–325. https://doi.org/10.1016/j.ijpharm.2017.12.002
Vithani, K., Goyanes, A., Jannin, V., Basit, A. W., Gaisford, S., & Boyd, B. J. (2018). An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharmaceutical Research, 36(1), Article 4. https://doi.org/10.1007/s11095-018-2531-1
Vithani, K., Maniruzzaman, M., Slipper, I. J., Mostafa, S., Miolane, C., Cuppok, Y., Marchaud, D., & Douroumis, D. (2013). Sustained release solid lipid matrices processed by hot-melt extrusion (HME). Colloids and Surfaces B: Biointerfaces, 110, 403–410. https://doi.org/10.1016/j.colsurfb.2013.03.060
Voltan, R., Castaldello, A., Brocca-Cofano, E., Altavilla, G., Caputo, A., Laus, M., Sparnacci, K., Ensoli, B., Spaccasassi, S., Ballestri, M., & Tondelli, L. (2007). Preparation and characterization of innovative protein-coated poly(methylmethacrylate) core-shell nanoparticles for vaccine purposes. Pharmaceutical Research, 24(10), 1870–1882. https://doi.org/10.1007/s11095-007-9310-8
Vorndran, E., Klammert, U., Ewald, A., Barralet, J. E., & Gbureck, U. (2010). Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices. Advanced Functional Materials, 20(10), 1585–1591. https://doi.org/10.1002/adfm.200901759
Vysloužil, J., Bavoľárová, J., Kejdušová, M., Vetchý, D., & Dvořáčková, K. (2013). Cationic Eudragit® polymers as excipients for microparticles prepared by solvent Eaaporation method. Česká a Slovenská Farmacie, 62(6), 249–254.
Wang, H., Dumpa, N., Bandari, S., Durig, T., & Repka, M. A. (2020). Fabrication of taste-masked donut-shaped tablets via fused filament fabrication 3D printing paired with hot-melt extrusion techniques. AAPS PharmSciTech, 21(7), Article 243. https://doi.org/10.1208/s12249-020-01783-0
Wang, S., Chen, X., Han, X., Hong, X., Li, X., Zhang, H., Li, M., Wang, Z., & Zheng, A. (2023). A review of 3D printing technology in pharmaceutics: Technology and applications, now and future. Pharmaceutics, 15(2), Article 416. https://doi.org/10.3390/pharmaceutics15020416
Wang, W., Chen, H., & Liang, W. (2003). Study on polymethacrylate nanoparticles as delivery system of antisense oligodeoxynucleotides. Yao Xue Xue Bao = Acta Pharmaceutica Sinica, 38(4), 298–301.
Wen, H., & Park, K. (Eds.). (2010). Oral controlled release formulation design and drug delivery: Theory to practice. Wiley. https://doi.org/10.1002/9780470640487
Wen-Kai Hsiao, B., Lorber, H. R., & Khinast, J. (2018). 3D printing of oral drugs: A new reality or hype? Expert Opinion on Drug Delivery, 15(1), 1–4. https://doi.org/10.1080/17425247.2017.1371698
Yoo, J.-W., Giri, N., & Lee, C. H. (2011). pH-sensitive Eudragit nanoparticles for mucosal drug delivery. International Journal of Pharmaceutics, 403(1–2), 262–267. https://doi.org/10.1016/j.ijpharm.2010.10.032
Yurtsal, Z. B., & Hasdemir, Ö. (2022). Investigation of the effect of different process variables on the production of Eudragit-based nanoparticles. Journal of Health Sciences Institute, 4(1), 12–20. http://cusbed.cumhuriyet.edu.tr/en/download/issue-full-file/81402#page=20
Zaid Alkilani, A., Omar, S., Nasereddin, J., Hamed, R., & Obeidat, R. (2024). Design of colon-targeted drug delivery of dexamethasone: Formulation and in vitro characterization of solid dispersions. Heliyon, 10(14), Article e34212. https://doi.org/10.1016/j.heliyon.2024.e34212
Zarrabi, A., Alipoor Amro Abadi, M., Khorasani, S., Mohammadabadi, M., Jamshidi, A., Torkaman, S., Taghavi, E., Mozafari, M. R., & Rasti, B. (2020). Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules, 25(3), 638. https://doi.org/10.3390/molecules25030638
Zhang, J., Feng, X., Patil, H., Tiwari, R. V., & Repka, M. A. (2017). Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. International Journal of Pharmaceutics, 519(1–2), 186–197. https://doi.org/10.1016/j.ijpharm.2016.12.049
Zhang, W., Li, X., Ye, T., Chen, F., Yu, S., Chen, J., Yang, X., Yang, N., Zhang, J., Liu, J., Pan, W., & Kong, J. (2014). Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. International Journal of Nanomedicine, 9, 4305–4315. https://doi.org/10.2147/IJN.S63414