تجزیه و تحلیل ژنتیکی و فیلوژنتیکی بخشی از ژنوم میتوکندری در گاومیش‌های خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه تحقیقات علوم دام کشور

2 موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 گروه علوم دامی دانشگاه آزاد اسلامی، واحد بهبهان، بهبهان، ایران

4 فارغ التحصیل مقطع کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد بهبهان، بهبهان، ایران

چکیده

هدف: مطالعه مولکولی ساختار ژنتیکی گاومیش برای شناخت دقیق‌تر خاستگاه این حیوان می‌تواند موثر باشد. در بین نشانگرهای مولکولی، توالی‌یابی ژنوم میتوکندری یکی از بهترین و رایج‌ترین روش‌ها برای طبقه‌بندی ژنتیکی جمعیت‌ها و گونه‌های نزدیک به هم، بررسی امکان اشتقاق گونه‌های مختلف از یک جد مشترک، مطالعه رابطه فیلوژنی هر موجود با سایر گونه‌ها و نژادها و دستیابی به راهکارهایی برای حفظ ذخایر ژنتیکی می‌باشد. هدف از این تحقیق تعیین توالی نواحی 12s rRNA و 16s rRNA ژنوم میتوکندری گاومیش خوزستان و تجزیه و تحلیل ژنتیکی و فیلوژنتیکی بخشی از آن بود.
مواد و روش‌ها: برای انجام این تحقیق تعداد 30 عدد نمونه خون از هر دو جنس از گاومیش‌های غیرخویشاوند جمع‌آوری شد. پس از استخراج DNA از آن‌ها، ناحیه مورد نظر توسط پرایمرهای اختصاصی با تکنیک PCR تکثیر و پس از خالص‌سازی توالی‌یابی شدند.
نتایج: نتایج حاصل از هم‌ردیف کردن توالی‌های نواحی 12srRNA و 16srRNA گاومیش خوزستان نشان داد که هیچگونه جهشی در جمعیت مذکور وجود ندارد که این امر بیانگر سطح تنوع پایین در جمعیت گاومیش خوزستان می‌باشد. براساس این تحقیق، نواحی 12srRNA و 16srRNA ناحیه کد کننده می‌باشد و میزان جهش و تنوع در آن پایین است. نتایج آزمون فیلوژنتیکی با استفاده از UPGMA برای هر دو جایگاه نشان داد که گاومیش‌های ایران با گاومیش‌های هندی و ایتالیایی در یک خوشه و نزدیک به هم می‌باشند.
نتیجه‌گیری: توالی حاصل از این مناطق برای اولین بار در بانک ژن با کد دسترسی MG650115 ثبت شد و با اضافه شدن نام گاومیش خوزستان در بانک جهانی ژن، این نژاد به انجمن‌های بین‌المللی معرفی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic and Phylogenetic Analysis of the Mitochondrial Genome in Khuzestan Buffalo

نویسندگان [English]

  • Sima Savar 1
  • Hamidreza Seyed abadi 2
  • Cyrus Eidivandi 3
  • Iman Harasi 4
1 Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
2 Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
3 Animal Science Department, Islamic Azad University, Behbahan Unit, Behbahan, Iran.
4 Graduated of Ms. From Islamic Azad University, Behbahan Unit, Behbahan, Iran.
چکیده [English]

Objective
A molecular study of the buffalo genetic structure can be effective for better understanding the origin of this animal. Among the molecular markers, mitochondrial genomic sequencing is one of the best and most commonly used methods for genetic classification of populations and species close together, studying the possibility of deriving different species from a common ancestor, studying the phylogenic relationship of each species with other species and races, and obtaining solutions for conservation genetic resources. The purpose of this research was to determine the sequence of 12s rRNA and 16s rRNA regions of Khouzestan buffalo.
Materials and methods
For this study, 30 blood samples collected from both sexes of unrelated Khuzestan buffalo. After DNA extraction, the target regions amplified by corresponding specific primers by PCR technique and sequenced after purification.
 
Results
The results of matching the sequences of 12srRNA and 16srRNA regions of Khuzestan buffalo showed that there was no mutation in this population, which indicates low diversity in Khuzestan buffalo population. According to this study, the 12srRNA and 16srRNA regions are encoding regions and the mutation and diversity are low. The results of the phylogenetic test using UPGMA for both sites showed that the buffaloes of Iran with Indian and Italian buffaloes are in a closely spaced cluster.
 
Conclusions
Finally, the sequences generated from these regions were the first recorded in the gene bank with MG650115 access code and the name of the Khuzestan buffalo brought to the World Bank Gene, and this race introduced to international associations.

کلیدواژه‌ها [English]

  • Khuzestan buffalo
  • mitochondrial genome
  • sequencing
  • 12s rRNA
  • 16s rRNA
منابع
بهاری زاده مریم، واعظ ترشیزی رسول (1390) بررسی عوامل محیطی موثر بر صفات مهم تولیدی گاومیش های ایران. پژوهشهای علوم دامی 21 (1)، 127-138.
خراتی کوپایی حامد، محمدآبادی محمدرضا، ترنگ علیرضا و همکاران (1391) بررسی ارتباط بین تغییرات آلل ژن DGAT1 با ورم پستان در گاوهای هولشتاین ایران. مجله ژنتیک نوین 7 (1)، 104-101.
خراتی کوپایی حامد، محمدآبادی محمدرضا، انصاری مهیاری سعید و همکاران (1390) تغییرات ژنتیکی ژنDGAT1  و ارتباط آن با تولید شیر در جمعیت گاو هلشتاین ایران. مجله علمی پژوهشی ایران 3 (2)، 185-192.
محمدی اکرم، محمدآبادی محمدرضا، میرزایی حمیدرضا و همکاران (1386) مطالعه ژن کاپاکازئین گاوهای بومی و هلشتاین در استان کرمان با استفاده از روش PCR_RFLP. مجله علوم کشاورزی و منابع طبیعی 16، 125-132.
علینقی‌زاده روح الله، محمدآبادی محمدرضا، زکی‌زاده سونیا (1389) چندشکلی اگزون 2 ژن BMP15 در بز قرمز جبال بارز. مجله بیوتکنولوژی کشاورزی 2 (1)، 69-80.
واجد ابراهیمی محمدتقی، محمدآبادی محمدرضا، اسماعیلی کشکوئیه علی (1394) بررسی تنوع ژنتیکی پنج جمعیت گوسفند ایرانی با استفاده از نشانگرهای ریز ماهواره‌ای. مجله بیوتکنولوژی کشاورزی 7 (4)، 143-158.
هادی‌زاده مرتضی، محمدآبادی محمدرضا، اسماعیلی زاده علی و همکاران (1393) تجزیه و تحلیل بیوانفورماتیک از اگزون 2 ژن BMP15  در بزهای تالی و بیتال. مجله ژنتیک نوین 9 (1)، 117-120.
 
هادی‌زاده مرتضی، محمدآبادی محمدرضا، نیازی علی و همکاران (1392) استفاده از ابزارهای بیوانفورماتیک برای مطالعه اگزون شماره 2 ژن GDF9 در بزهای تالی و بیتال. مجله ژنتیکی نوین 8 (3)، 283-288.
 
References
Alinaghizadeh H, Mohammad Abadi MR, Zakizadeh S (2010) Exon 2 of BMP15 gene polymorphismin Jabal Barez Red Goat. Agric Biotechnol J 2, 69-80 (In Persian).
Baharizadeh M, VAez Torshizi R (2011) Investigation of environmental effects on production traits in Iranian buffalo. Anim Sci Res 21,127-138 (In Persian).
Dalmasso A,  Fontanella  E,  Piatti  P  et al. (2004)  A  multiplex PCR assay for the identification of animal species in feedstuffs. Mol Cell Probe 18, 81–87.
Denver DR, Morris K, Lynch M et al. (2000) High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Sci 289, 23-42.
Ghovvati S,  Nassiri  MR,  Mirhoseini SZ et al. (2008) Fraud identification in industrial meat products  by  multiplex  PCR assay. Food Control 20, 696-699.
Guha S, Goyal SP, Kashyap VK (2006) Genomic variation in the mitochondrially encoded cytochorome b and 12s RNA genes. Characterization of eight endsngered pecorn species. Anim Genet 37, 262-265.
 Hadizadeh M, Mohammadabadi MR, Niazi A et al. (2013) Use of bioinformatics tools to study exon 2 of GDF9 gene in Tali and Beetal goats. Modern Genet J 8, 283-288 (In Persian).
Hadizadeh M, Niazi A, Mohammad Abadi M et al. (2014). Bioinformatics analysis of the BMP15 exon 2 in Tali and Beetal goats. Modern Genet J 9, 117-120 (In Persian).
Hiendleder S, Lewalski H, Wassmuth R et al. (1998) The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. Mol Bio Evol 47, 441-448.
Kharrati Koopaei H, Mohammad Abadi MR, Ansari Mehyari S et al. (2012) Effect of DGAT1 variants on milk composition traits in Iranian Holstein cattle population. Anim Sci Papers Report 30, 231-240.
Kharrati Koopaei H, Mohammadabadi MR, Ansari Mehyari S  et al. (2011) Genetic Variation of DGAT1 Gene and its Association with Milk Production in Iranian Holstein Cattle Breed Population. Iran J Anim Sci Res 3, 185-192 (In Persian).
Kharrati koopaei H, Mohammadabadi MR, Tarang A et al. (2012) Study of the association between the allelic variations in DGAT1 gene with mastitis in Iranian Holstein cattle. Modern Genet J 7, 101-104 (In Persian).
Khodabakhshzadeh R, Mohammadabadi MR, Esmailizadeh Koshkoieh A et al. (2016b) Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep. Polish J Vet Sci 19, 281–289.
Lalitha S (2000) Primer premier 5. Biotech Software & Internet Report: The Com Software J Sci 1, 270-272.
Manea BG, Mendirattaa SK, Tiwarib AK et al. (2013) Sequence analysis of mitochondrial 16S rRNA gene to identify meat species. J Appl Anim Res 41, 7781.
Miller SA, Dykes DD, Polesky HF (1998)  A Simple salting out pro cedure for extraction of DNA from human nucleated cell. Nucl Acid Res 16, 12-15.
Mohammadabadi MR (2017) Role of clostridium perfringens in pathogenicity of some domestic animals. J Adv Agri 7, 1117-1121.
Mohammadabadi MR, Esfandyarpoor E, Mousapour A (2017) Using Inter Simple Sequence Repeat Multi-Loci Markers for Studying Genetic Diversity in Kermani Sheep J Res Dev 5, 154-157.
Mohammadi A, Mohammadabadi MR, Mirzaei H et al. (2009) Study of Kappa Casein gene of local and Holstein dairy cattle in Kerman province using PCR-RFLP method. J Agri Sci Nat Res 16, 125-132 (In Persian).
Moioli B (2005) Breeding and selection of dairy buffalo. FAO press. Italy.
Nagarajan M, Nimisha K, Kumar S (2015) Mitochondrial   DNA   Variability   of   Domestic   River   Buffalo   (Bubalus   bubalis) Populations: Genetic Evidence for Domestication of River Buffalo in Indian Subcontinent. Gen Bio Evol Adv Acce pub 1-18.
Ramadan H (2011) Sequence of specific mitochondrial 16S rRNA gene fragment from Egyptian buffalo is used as a pattern for discrimination between river buffaloes, cattle, sheep and goats. Mol Biol Rep 38, 3929–3934.
Ramadan HAI, Mahfoz  I (2008) Phylogenetic analysis and comparison between cow and buffalo (including Egyptian buffaloes) mitochondrial displacement-loop regions. Mitochondrial DNA 19, 401–410.
Vajed Ebrahimi MT, Mohammad Abadi MR, Esmailizadeh AK (2016) Analysis of genetic diversity in five Iranian sheep population using microsatellites markers. J Agri Biotech 7, 143-158 (In Persian).
Vajed Ebrahimi MT, Mohammad Abadi MR, Esmailizadeh AK (2017) Using microsatellite markers to analyze genetic diversity in 14 sheep types in Iran. Arch Anim Breed 60, 183-189.
Zamani P, Akhondi M, Mohammadabadi MR (2015) Associations of Inter-Simple Sequence Repeat loci with predicted breeding values of body weight in sheep. Small Rum Res 132, 123-127.