تجزیه و تحلیل مجموعه‌های‌ ژنی جهت شناسایی ژن‌ها و مسیرهای زیستی مرتبط با صفات وزن تخم‌مرغ در کل دوره تولید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران.

2 گروه علوم دامی

3 استادیار گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران

4 دانش آموخته دکتری ژنتیک و اصلاح دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز. تبریز، ایران.

چکیده

هدف: شناسایی ژن­‌های بزرگ اثر مؤثر بر صفات مهم اقتصادی یکی از مهم‌‌ترین اهداف اصلاح نژادی در پرورش مرغ است. پژوهش حاضر به منظور مطالعه پویش ژنومی بر اساس آنالیز مجموعه‌­های ژنی برای شناسایی جایگاه­‌های ژنی مؤثر بر صفات مرتبط با وزن تخم­مرغ نژاد رُد آیلند رِد با استفاده از آرایه­‌های ژنومی با تراکم بالا بوده است.
مواد و روش­ها: اطلاعات رکورد‌های فنوتیپی و ژنوتیپی مرتبط با وزن تخم­مرغ نمونه­‌ها از پایگاه ذخیره ژنومی برخط Figshare استفاده شد. آنالیز پویش کل ژنومی بر پایه آنالیز مسیر در سه مرحله تعیین مکان SNPهای معنی­‌دار با ژن، ارتباط ژن‌­ها به طبقات عملکردی و مسیرهای بیوشیمیایی و پویش کل ژنومی بر پایه آنالیز مسیر انجام می‌­شود. بر این اساس، مطالعه پویش ژنومی برای صفات وزن تخم­مرغ در اولین تخم­گذاری و 28، 36، 56، 66، 72 و 80 هفتگی در 1078 قطعه مرغ در برنامه GenABEL انجام شد. سپس با استفاده از بسته نرم افزاری biomaRt2 ژن­های معنی­داری که در داخل و یا 20 کیلوباز بالادست یا پایین دست نشانگرهای SNP معنی­دار قرار داشتند، شناسایی گردید. در نهایت تفسیر مجموعه ژنی با بسته نرم افزاری goseq برنامه R با هدف شناسایی عملکرد بیولوژیکی ژن­‌های نزدیک به مناطق انتخابی و ژن‌­های کاندیدا از طریق پایگاه‌­های GO، KEGG، DAVID و PANTHER انجام شد.
نتایج: در این پژوهش تعداد 9 نشانگر تک نوکلئوتیدی واقع روی کروموزوم­‌‌های 3، 4، 6، 7، 8، 9، 19، 20 و 22 شناسایی شدند که با ژن‌­هایMC3R ،­LEPR ، ECT2، SH3GL2، KCNMA1، SPP1، PCK1، MMP9، PPP1CB، ACOX1 و IGFBP2 مرتبط بودند. تعدادی از این نشانگرهای شناسایی شده در مناطق ژنومی معنی­‌دار با مطالعه پیشین مرتبط با وزن تخم­مرغ هم­خوانی داشتند. در تفسیر مجموعه ژنی تعداد 28 مسیر هستی شناسی ژنی و بیوشیمیایی با صفات وزن تخم­مرغ شناسایی شد (P˂0.01). از این بین، مسیرهایRegulation of feeding behavior،­Positive Regulation of apoptotic process،Positive regulation of protein phosphorylation osteoblast differentiation، Positive regulation of gluconeogenesis، Cell-cell junction وFocal adhesion عملکرد‌های مهمی را در ارتباط با وزن تخم­مرغ و فرآیند تولید تخم مرغ از طریق رشد اووسیت و تخمک­اندازی، تشکیل پروتئین آلبومین و تشکیل پوسته تخم مرغ بر عهده داشتند.
نتیجه ­گیری: با توجه به تأیید نتایج حاصل از مطالعه قبلی در زمینه پویش ژنومی صفات وزن تخم­مرغ و شناسایی مناطق ژنومی جدید استفاده از یافته­های این تحقیق می­تواند در انتخاب ژنتیکی برنامه­های اصلاح نژادی مرغ مفید باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Gene-set enrichment analysis to identify genes and biological pathways associated with egg weight in the whole laying period

نویسندگان [English]

  • Ali Reza Jafarymanesh 1
  • Amir Hossein Khaltabadi Farahani 2
  • Mohammad Hossein Moradi 3
  • Hossein Mohammadi 4
1 MSc Student, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
2 department of animal science
3 Assistant Professor, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
4 Ph.D Graduated, Department of Animal Science, Faculty of Agricultural Sciences, University of Tabriz, Tabriz, Iran
چکیده [English]

Objective
Identifying genes with large effects on economically important traits, has been one of the important goals in chicken breeding. The present study aimed to conduct a genome wide association studies (GWAS) based on Gene-set enrichment analysis for identifying the loci associated with egg weight in Rhode Island Red chicken using the high-density SNPs.
 
Materials and methods
Phenotypes records and genotypic data were obtained from the Figshare online public repository. The gene set analysis consists basically in three different steps: the assignment of SNPs to genes, the assignment of genes to functional categories, and finally the association analysis between each functional category and the phenotype of interest. Genome wide association study for 1,078 hens was performed with egg weight including first egg weight, eggs weight at 28, 36, 56, 66, 72, and 80 weeks of age using GenABEL software. Using the biomaRt2 R package the SNP were assigned to genes if they were within the genomic sequence of the gene or within a flanking region of 20 kb up- and downstream of the gene. Subsequently, gene enrichment analysis was performed with the goseq R package and bioinformatics analysis was implemented to identify the biological pathways performed in GO, KEEG, DAVID and PANTHER databases.
 
Results
In this research, 9 SNP markers on chromosomes 3, 4, 6, 7, 8, 9, 19, 20 and 22 located in MC3R, LEPR, ECT2, SH3GL2, KCNMA1, SPP1, PCK1, MMP9, PPP1CB, ACOX1, and IGFBP2 genes were identified. Some of the genes that were found are consistent with some previous studies related to egg weights. According to pathway analysis, 28 pathways from gene ontology and biological pathways were associated with the egg weight (P˂0.01). Among these pathways, the regulation of feeding behavior, positive regulation of the apoptotic process, positive regulation of protein phosphorylation, osteoblast differentiation, positive regulation of gluconeogenesis, cell-cell junction, and focal adhesion have important functions in creating the egg weight and process production through the development and ovulation of the oocytes, the formation of albumen, and the formation of eggshell.
 
Conclusions
 In total, this study supported previous results from GWAS of egg weights, also revealed additional regions in the chicken genome associated with these economically important traits, using these findings could potentially be useful for genetic selection in the breeding programs.

کلیدواژه‌ها [English]

  • Egg weight
  • Genome scan
  • Gene ontology
  • Pathway-based analysis
Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. J Bioinform 23, 1294–1296.
Bennett AK, Hester PY, Spurlock DE (2006) Polymorphisms in vitamin D receptor, osteopontin, insulin-like growth factor 1 and insulin, and their associations with bone, egg and growth traits in a layer-broiler cross in chickens. Anim Genet 37, 283-286.
Boschiero C, Moreira GCM, Gheyas AA et al. (2018) Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines. BMC Genomics 19, 83.
Braz CU, Taylor JF, Bresolin T et al. (2019) Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle. BMC Genet 20, 8.
Chen B, Xu J, He X et al. (2015) A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth. PLoS One 10, e0137087.
Clancey E, Kiser JN, Moraes JGN et al. (2019) Genome-wide association analysis and gene set enrichment analysis with SNP data identify genes associated with 305-day milk yield in Holstein dairy cows. Anim Genet 50, 254-258.
Darzi Niarami M, Masoudi AA, Vaez Torshizi R (2014) Association of single nucleotide polymorphism of GHSR and TGFB2 genes with growth and body composition traits in sire and dam lines of a broiler chicken. Anim Biotechnol 25, 13-22.
Dong X, Li J, Zhang Y et al. (2019) Genomic Analysis Reveals Pleiotropic Alleles at EDN3 and BMP7 Involved in Chicken Comb Color and Egg Production. Front Genet 10, 612.
Duan Z, Chen S, Sun C et al. (2015) Polymorphisms in Ion Transport Genes Are Associated with Eggshell Mechanical Property. PLoS One 10, e0130160.
Dunn IC, Joseph NT, Bain M et al. (2009) Polymorphisms in eggshell organic matrix genes are associated with eggshell quality measurements in pedigree Rhode Island Red hens. Anim Genet 40, 110-114.
Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc 4, 1184–1191.
Huang S, He Y, Ye S et al. (2018) Genome-wide association study on chicken carcass traits using sequence data imputed from SNP array. J Appl Genet 59, 335-344.
Jebessa E, Ouyang H, Abdalla BA et al. (2017) Characterization of miRNA and their target gene during chicken embryo skeletal muscle development. Oncotarget 9, 17309-17324.
Li DF, Liu WB, Liu JF et al. (2012) Whole-genome scan for signatures of recent selection reveals loci associated with important traits in White Leghorn chickens. Poult Sci 91, 1804-1812.
Liu J, Liu R, Wang J et al. (2018) Exploring Genomic Variants Related to Residual Feed Intake in Local and Commercial Chickens by Whole Genomic Resequencing. Genes 9, 57-67.
Liu Z, Sun C, Yan Y, et al. (2018) Genome-wide association analysis of age-dependent egg weights in chickens. Front Genet 9, 128.
Liu Z, Yang N, Yan Y et al. (2019) Genome-wide association analysis of egg production performance in chickens across the whole laying period. BMC Genet 20, 67.
Lu Y, Chen SR, Liu WB et al. (2012) Polymorphisms in Wnt signaling pathway genes are significantly associated with chicken carcass traits. Poult Sci 91, 1299-307.
Moazeni SM, Mohammadabadi MR, Sadeghi M et al. (2016) Association of the melanocortin-3(MC3R) receptor gene with growth and reproductive traits in Mazandaran indigenous chicken. J Livest Sci Tech 4, 51-56.
Mohammadifar A, Mohammadabadi MR (2018) Melanocortin-3 receptor (mc3r) gene association with growth and egg production traits in Fars indigenous chicken. Malays Appl Biol 47, 85–90.
Mohammadifar A, Mohammadabadi MR )2017( The Effect of Uncoupling Protein Polymorphisms on Growth, Breeding Value of Growth and Reproductive Traits in the Fars Indigenous Chicken. Iran J Appl Anim Sci 7, 679-685.
Mooney MA, Wilmot B (2015) Gene Set Analysis: A Step-By-Step Guide. AM J MED GENET B 168, 517-527.
Nie Q, Lei M, Ouyang J et al. (2005) Identification and characterization of single nucleotide polymorphisms in 12 chicken growth-correlated genes by denaturing high performance liquid chromatography. Genet Sel Evol 37, 339-60.
Peng G, Luo L, Siu H et al. (2010) Gene and pathway-based second wave analysis of genome-wide association studies. Eur J Hum Genet 18, 111–117.
Pértille F, Moreira GC, Zanella R et al. (2017) Genome-wide association study for performance traits in chickens using genotype by sequencing approach. Sci Rep 7, 41748.
Powell JA (2014) GO2MSIG, an automated GO based multi-species gene set generator for gene set enrichment analysis. BMC Bioinform 17, 146.
Rasal KD, Shah TM, Vaidya M et al. (2015) Analysis of consequences of non-synonymous SNP in feed conversion ratio associated TGF-β receptor type 3 gene in chicken. Meta Gene 4, 107-117.
Sah N, Mishra B (2018) Regulation of egg formation in the oviduct of laying hen. Poult Sci J 74, 1–13.
Sell-Kubiak E, Wimmers K, Reyer H, Szwaczkowski T (2017) Genetic aspects of feed efficiency and reduction of environmental footprint in broilers: a review. J Appl Genet 58, 487-498.
Shahdadnejad N, Mohammadabadi MR, Shamsadini M. 2016. Typing of Clostridium Perfringens Isolated from Broiler Chickens Using Multiplex PCR. Genet 3rd millennium 14, 4368-4374.
Tongsiri S, Jeyaruban MG, Van Der Werf JH (2015) Genetic Parameters for Egg Production Traits in Purebred and Hybrid Chicken in a Tropical Environment. Br Poult Sci 6, 613-20.
Walugembe M, Bertolini F, Dematawewa CMB et al. (2019) Detection of Selection Signatures among Brazilian, Sri Lankan, and Egyptian Chicken Populations under Different Environmental Conditions. Front Genet 9, 737.
Wang L, Jia P, Wolfinger RD et al. (2011) Gene set analysis of genome-wide association studies: Methodological issues and perspectives. Genomics 98, 1–8.
Wolc A, Arango J, Jankowski T et al. (2013) Pedigree and genomic analyses of feed consumption and residual feed intake in laying hens. Poult Sci 92, 2270-2275.
Xu H, Zeng H, Luo C et al. (2011) Genetic effects of polymorphisms in candidate genes and the QTL region on chicken age at first egg. BMC Genet 15, 33.
Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Method gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol 11, 14-23.
Yousefi Zonuz A, Alijani A, Mohammadi H et al. (2013) Estimation of genetic parameters for productive and reproductive traits in Esfahan native chickens. J Livest Sci Tech 1, 36-40.
Zandi E, Mohammadabadi MR, Ezzatkhah M, Esmailizadeh AK (2014) Typing of Toxigenic Isolates of Clostridium Perfringens by Multiplex PCR in Ostrich. Iran J Appl Anim Sci 4, 509-514.
Zappaterra M (2017) Genomics and New Approaches to Study Complex Traits in Pigs and Other Livestock Species. A Focus on the Investigation of Gene Networks Related to Fat Quality and Deposition in Pigs and Preliminary Research to Study Factors Related to Performances in Piglets and Poultry, PhD thesis, Alma Mater Studiorum Università di Bologna.
Zhang GX, Fan QC, Zhang T et al. (2015) Genome-wide association study of growth traits in the Jinghai Yellow chicken. Genet Mol Res 14, 15331-15338.
Zhu G, Jiang Y (2014) Polymorphism, genetic effect and association with egg production traits of chicken matrix metalloproteinases 9 promoter. Asian-Australas J Anim Sci 27, 1526-1531.