جداسازی، همسانه‌سازی و بیان ژن سرین پروتئاز yyxA استخراج شده از باکتری Bacillus licheniformis در باکتری Escherichia coli

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی قزوین (ره)

2 گروه بیوتکنولوژی، دانشکده کشاورزی، دانشگاه بین المللی امام خمینی قزوین

چکیده

هدف: پروتئازها از مهم‌‌‌‌‌‌‌ترین آنزیم‌های صنعتی محسوب می‌شوند. معمولاً برای تولید این آنزیم‌ها برای مصارف صنعتی از باکتری‌های متعلق به جنس باسیلوس استفاده می‌شود. هدف از این پژوهش جداسازی، همسانه‌سازی، تعیین توالی، بیان و بررسی بیوانفورماتیکی ژن سرین پروتئاز yyxA استخراج شده از باکتری باسیلوس لیکنی‌فورمیس بود.
مواد و روش‌ها: در این مطالعه، پس از استخراج DNA باکتریایی، ژن سرین پروتئاز با نام yyxA از باکتری Bacillus licheniformis با استفاده از تکنیک واکنش زنجیره‌ای پلی‌مراز جداسازی و در ناقل pTG19-T و سپس ناقل pET28a همسانه‌سازی شدند و ساختار مولکولی، ویژگی‌های بیوشیمیایی و فیلوژنتیکی آن مورد بررسی قرار گرفت. ساختار سه بعدی آنزیم همسانه‌سازی شده با استفاده از ابزارهای PHYRE2، I-TASSER، RAPTORX و Modeller پیش‌بینی شد. تأیید بیان ژن yyxA توسط آنالیز SDS-PAGE و دات بلاتینگ انجام شد.
نتایج: درستی همسانه‌سازی به وسیله توالی‌یابی تأیید شد. تولید پروتئین نوترکیب با القاء IPTG به میزبان حاوی پلاسمید pET28a-yyxA با موفقیت انجام شد. بهینه‌سازی تولید پروتئین نوترکیب مورد بررسی قرار گرفت. بیشترین مقادیر بیان در دمای 37 درجه سلسیوس و طی زمان 4 ساعت و با IPTG یک میلی‌مولار به‏دست آمد. نتایج حاصل از بررسی‌های فیلوژنتیکی، توالی پروتئینی به دست آمده شباهت زیادی را با توالی‌های سایر باسیلوس‌ها از قبیل B. subtilis، B. gobiensis و B. pumilus نشان دادند. پس از ارزیابی مدل‌های ترسیم شده مشخص گردید که مدل ارائه شده توسط نرم‌افزار PHYRE2 و I-TASSER مدل‌های مطلوبی برای پیش‌بینی ساختار سه بعدی این پروتئاز هستند.
نتیجه‌گیری: توالی نوکلئوتیدی ژن yyxA به طول 1212 نوکلئوتید بوده که پروتئینی با 403 آمینواسید را رمز می‌کند. بررسی‌ها نشان داد که آنزیم کد شونده توسط این ژن در دسته آنزیم‌های پایدار قرار گرفته و در باکتری اشریشیاکلای به صورت محلول بیان خواهد شد که این مزایا موجب می‌شود که آنزیم مذکور به عنوان گزینه مناسب برای استفاده در صنعت در نظر گرفته شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Isolation, Molecular Cloning, and Expression of yyxA Serine Protease Gene Extracted from Bacillus licheniformis in Escherichia coli

نویسندگان [English]

  • zahra aghaei jeshvaghani 1
  • ramin hoseini 2
1 Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University,
2 دانشیار گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
چکیده [English]

Objective
Proteases are among the most important industrial enzymes. Microbial proteases, especially from Bacillus sp., are most widely exploited industrially. The aim of this study was isolation, cloning, sequencing, expression, and bioinformatics study of yyxA serine protease gene extracted from Bacillus licheniformis.
 
Materials and methods
In this study, after extraction of bacterial DNA, the yyxA serine protease gene was isolated from Bacillus licheniformis using the polymerase chain reaction technique and cloned into the pTG19-T vector. The molecular structure, its biochemical and phylogenetic properties were investigated. The three-dimensional structure of the cloned enzyme was predicted using the I-TASSER, PHYRE2, RAPTORX, and Modeller tools. Confirmation of yyxA gene expression was performed by SDS-PAGE and dot blot analysis.
 
Results
Cloning was confirmed by sequencing. Based on the results of phylogenetic studies, the obtained protein sequence showed high similarity to the sequences of other Bacillus species, such as B. subtilis, B. gobiensis, and B. pumilus. After evaluating the drawn models, it was found that the models provided by PHYRE2 and I-TASSER software were desirable ones for predicting the three-dimensional structure of this protease. Recombinant protein production was successfully induced by IPTG induction in the host containing the plasmid pET28a-yyxA. Optimization of recombinant protein production was investigated. The highest expression values were obtained at 37 ° C for 4 hours with one mM IPTG.
 
Conclusions
The nucleotide sequence of the yyxA gene is 1212 nucleotides long, encoding a protein with 403 amino acids. Studies have shown that the enzyme encoded by this gene is in the category of stable enzyme and will be expressed in solution in Escherichia coli. These advantages make the enzyme as a suitable candidate for use in industry.

کلیدواژه‌ها [English]

  • Bacillus licheniformis
  • Expression recombinant protein
  • Molecular cloning
  • Modeling protein
  • serine protease
احسنی محمدرضا ، محمدآبادی محمدرضا ، اسدی فوزی و همکاران (1398) بیان ژن لپتین در بافت چربی زیرپوستی گاوهای هلشتاین با استفاده از Real Time PCR. مجله بیوتکنولوژی کشاورزی 11(1)، 150-135.
توحیدی نژاد فاطمه، محمدآبادی محمدرضا، اسمعیلی زاده کشکوئیه علی، نجمی نوری عذرا (1393) مقایسه سطوح مختلف بیان ژنRheb  در بافت های مختلف بز کرکی راینی. مجله بیوتکنولوژی کشاورزی 6(4)، 50-35.
جعفری دره در امیر حسین، محمدآبادی محمدرضا، اسمعیلی زاده کشکوئیه علی، ریاحی مدوار علی (1395) بررسی بیان ژن CIB4  در بافت‌های مختلف گوسفند کرمانی با استفاده از .Real Time qPCR مجله پژوهش در نشخوارکنندگان 4(4)، 132-119.
محمدآبادی محمدرضا (1399) بیان ژن ESR1 در بز کرکی راینی با استفاده از Real Time PCR‎. مجله بیوتکنولوژی کشاورزی 12(1)، 192-177.
محمدآبادی محمدرضا (1399) پروفایل بیانی mRNA مختص بافت ژن ESR2 در بز. مجله بیوتکنولوژی کشاورزی 12(4)، 181-167.
References
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019a) Effect of Roasted Soybean and Canola Seeds on Peroxisome Proliferator‐Activated Receptors Gamma (PPARG) Gene Expression and Cattle Milk Characteristics. Iran J Appl Anim Sci 9, 635-642.
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019b) Leptin gene expression in subcutaneous adipose tissue of Holstein dairy cattle using Real Time PCR. Agric Biotechnol J 11, 135-150 (In Persian).
Ageitos JM, Vallejo JA, Serrat M et al. (2013) In Vitro Ca2+-Dependent Maturation of Milk-Clotting Recombinant Epr: Minor Extracellular Protease: From Bacillus licheniformis. Mol Biotechnol 54, 304–311.
Banerjee A, Pal S, Paul T et al. (2014) Characterization of Bacillus anthracis proteases through protein-protein interaction: an in silico study of anthrax pathogenicity. Cellmed 4(1), 1-12.
Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res e322.
Bhatt HB, Singh SP (2020) Cloning, expression, and structural elucidation of a biotechnologically potential alkaline serine protease from a newly isolated haloalkaliphilic Bacillus lehensis JO-26. Front Microbiol 11, 941-956.
Birnboim HC, Doly J (1979) A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acid Res 7, 1513–1525.
Borgmeier C, Bongaerts J, Meinhardt F (2012) Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production. J Biotechnol 159, 12-20.
Çalık P, Çalık G, Özdamar TH (2001) Bioprocess development for serine alkaline protease production: a review. Rev Chem Eng 17, 1–62.
Çalık P, Kalender N, Özdamar TH (2003) Overexpression of serine alkaline protease encoding gene in Bacillus species: performance analyses. Enzyme Microb Technol 33(7), 967-974.
Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria genetic transformation of Escherichia coli by R-factor DNA. Proc Nati Acad Sci 69:2110–2114.
Cheng RH, Jiang N (2006) Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett 28, 55–59.
Gasteiger E, Hoogland C, Gattiker A et al. (2005) Protein identification and analysis tools on the ExPASy server. pp: 571-607. In: John M, Walker, editor. The proteomics protocols handbook. Totowa, NJ: Humana Press.
Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6), 681–4.
Guleria S, Walia A, Chauhan A, Shirkot CK (2016) Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. Int J Food Microbiol 232, 134–143.
Gupta R, Beg QK, Khan S, Chahuan B (2002) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol 60, 381–95.
Hadjidj R, Badis A, Mechri S et al. (2018) Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis K7A. Int J Biol Macromolec 114, 1033-1048.
Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Bioch 88, 1895–1898.
Joshi S, Satyanarayana T (2013) Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresour Technol 131, 76–85.
Kaur I, Kocher GS, Gupta VK (2012) Molecular Cloning and Nucleotide Sequence of the Genefor an Alkaline Protease from Bacillus circulans MTCC 7906. Indian J Microbiol 52 (4), 630-637.
Kim GM, Lee AR, Lee KW et al. (2009) Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from cheonggukjang. J Microbiol Biotechnol 19, 997-1004.
Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–32.
Manachini PL, Fortina MG (1998) Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol Lett 20, 565–568.
Masoudzadeh SH, Mohammadabadi M, Khezri A, et al. (2020) Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of Kermani lambs. Small Rumin Res 193, e106276.
Mohammadabadi MR, Tohidinejad F (2017) Charachteristics determination of Rheb gene and protein in Raini Cashmere goat. Iran J Appl Anim Sci 7, 289-295.
Mohammadabadi M (2021) Tissue-specific mRNA expression profile of ESR2 gene in goat. Agric Biotechnol J 12 (4), 167-181 (In Persian).
Mohammadabadi MR, Kord M, Nazari M (2018) Studying expression of leptin gene in different tissues of Kermani Sheep using Real Time PCR. Agric Biotechnol J 10, 111-122 (in Persian).
Mohammadabadi MR (2020) Expression of ESR1 gene in Raini Cashmere goat using Real Time PCR. Agric Biotechnol J 12 (1), 177-192 (In Persian).
Mohammadabadi M (2021) Tissue-specific mRNA expression profile of ESR2 gene in goat. Agric Biotechnol J 12 (4), 167-181 (In Persian).
Nascimento WCAD, Martins MLL (2004) Production and properties of an extracellular protease from thermophilic Bacillus sp. Braz J Microbiol 35, 91-96.
Pastor MD, Lorda GS, Balatti A (2001) Protease obtention using Bacillus subtilis 3411 and amaranth seed meal medium at different aeration rates. Braz J Microbiol 32, 6-9.
Rawlings ND, Morton FR, Kok CY et al. (2008) MEROPS: The peptidase database. Nucleic Acids Res 36, 320–325.
Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779-815.
Sambrook J and Russell DW (2001) Molecular cloning: a laboratory manual’. 3nd ed. Vol: 1-3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
Sareen R, Bornscheuer UT, Mishra P (2005) Cloning, functional expression and characterization of an alkaline protease from Bacillus licheniformis. Biotechnol Lett 27, 1901–1907.
Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a bio-control factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 171, 5646–5649.
Suberu Y, Akande I, Samuel T et al. (2019) Cloning, expression, purification and characterisation of serine alkaline protease from Bacillus subtilis RD7. Biocatal Agric Biotechnol 20, 101264.
Sulaiman N, Mahady NM, Ramly NZ (2017) Substrate binding site of proteases from bacillus lehensis G1 by molecular docking. Academia 5 (1), 36-43.
Takagi H, Takashi M (2003) A new approach for alteration of protease functions: pro-sequence engineering. Appl Microbiol Biotechnil 63, 1-9.
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24 (8), 1596 –1599.
Tang XM, Shen W, Lakay FM et al. (2004) Cloning and over-expression of an alkaline protease from Bacillus licheniformis. Biotechnol Lett 26, 975–979.
Tekin A, Uzuner U, Sezen K (2020) Homology modeling and heterologous expression of highly alkaline subtilisin-like serine protease from Bacillus halodurans C-125. Biotechnol Lett 43(2), 479-494.
Tohidi nezhad F, Mohammadabadi MR, Esmailizadeh AK, Najmi Noori A (2015) Comparison of different levels of Rheb gene expression in different tissues of Raini Cashmir goat. Agric Biotechnol J 6, 35-50.
Van der Laan JC, Gerritse G, Mulleners LJ et al. (1991) Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl Environ Microbiol 57(4), 901-909.
Ward E, Kerry BR, Manzanilla-Lopez RH, et al. (2012) The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode bio-control. PLoS One 7 (4), e35657.
Wiegand S, Voigt B, Albrecht D et al. (2013) Fermentation stage-dependent adaptations of Bacillus licheniformis during enzyme production. Microb Cell Fact 12 (1), 1-18.
Yao Zh, Kim JA, Kim JH (2018) Gene cloning, expression, and properties of a fibrinolytic enzyme secreted by Bacillus pumilus BS15 isolated from gul (oyster) jeotgal. Biotechnol Bioprocess Eng 23 (3), 293-301