طراحی و ساخت کاست رمزکننده عامل رشد اپیدرمی انسانی برای بیان در بذر گیاه جو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک به نژادی ، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران- دانشجوی دکتری بیوتکنولوژی

2 گروه مهندسی تولید و ژنتیک به نژادی ، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 تهران پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری

4 گروه زیست‌فرآورده‌های گیاهی، پژوهشکده زیست‌فناوری کشاورزی، پژوهشگاه ملی مهندسی ژنتیک و زیست‌فناوری، تهران، ایران

5 هیات علمی

6 پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، پژوهشکده زیست فناوری کشاورزی، گروه زیت فراورده های گیاهی تهران کیلومتر 15 اتوبان کرج-

چکیده

هدف: گیاهان کارآیی بسیاری در تولید پروتئین‌های ارزشمند دارویی دارند. عامل رشد اپیدرمی انسانی، اثرات بی‌شماری بر روی سیستم‌های مختلف سلولی داشته و نقش مهمی در بهبودی زخم‌ها و اندام‌زایی دارد. هدف از پژوهش اخیر ساخت سازه‌های ویژه تک‌لپه‌ای‌ها برای انتقال بعدی ژن عامل رشد اپیدرمی و تولید انبوه آن در یک گیاه تک‌لپه‌ای خودگشن یعنی جو بود. گیاه جو با داشتن عملکرد پروتئینی بالا و دگرگشنی بسیار پایین، میزبان ایده‌الی برای تولید عامل رشد اپیدرمی است.
مواد و روش‌ها: به‌منظور دسترسی به بالاترین میزان بیان عامل رشد اپیدرمی در بذر جو، توالی ژن موردنظر بر اساس ترجیح کدونی گیاه جو با نرم‌افزار COOL بهینه و همراه با پیش‌بر اختصاصی دی‌هوردئین سنتز شد. همچنین توالی راهنمای پپتیدی اندامک ذخیره‌ای پروتئین در بذر جو در ابتدای ناحیه رمزکننده قرار گرفت. پس از دریافت قطعه سنتزی در ناقل pUC57Hvorhegf، آن قطعه توسط آنزیم‌های SacI و HindIII از ناقل جدا و در پلاسمید pBI121 همسانه‌سازی شد. در گام بعدی همسانه‌سازی، برای درج توالی ژن موردنظر در ناقل pGH215، به دلیل نبود جایگاه‌های شناسایی یکسان در این ناقل‌ها، از ناقل حدواسط pBI121Gus-12 استفاده شد. بعد از برش ناقل همسانه‌سازی و pBI121Gus-12 توسط آنزیم‌های SacI و KpnI، همسانه‌سازی قطعه موردنظر در pBI121Gus-12 انجام گرفت. در گام آخر، ناقل pBI121G-12Hvorhegf و pGH215 با آنزیم‌های KpnI و SalI هضم شده و توالی موردنظر در مرز راست T-DNA و قبل از پایان دهنده NOS قرار گرفت.
نتایج: با استفاده از آزمون کلونی پی‌سی‌آر، الگوی هضم آنزیمی و توالی‌یابی با آغازگرهای رفت‌وبرگشت، درستی همسانه‌سازی و تولید ناقل‌های pBI121Hvorhegf واجد ژن hegf با نشانگر کانامایسین و pGH215Hvorhegf واجد ژن hegf با نشانگر هیگرومایسین، مناسب برای انتقال ژن در تک‌لپه‌ای‌ها تائید شد.
نتیجه‌گیری: ناقل بیانی نوترکیب pGH215 تغییریافته دارای کاست ژنی موردنظر همراه با نشانگر هیگرومایسین می‌تواند برای انتقال ژن موردنظر در تک‌لپه‌ای‌ها و بیان پروتئین نوترکیب در اندام ذخیره‌ای بذر استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Designing and constructing the encoding cassette of human epidermal growth factor for expression in barley seeds

نویسندگان [English]

  • Shahrokh Garousi 1
  • Sodabeh Jahanbakhsh Godehkahriz 2
  • kasra esfahani 3
  • Tahmineh Lohrasebi 4
  • amir mousavi 5
  • Ali Hatef Salmanian 6
1 Department of plant genetics and production engineering, Faculty of agriculture and natural resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Department of plant genetics and production engineering, Faculty of agriculture and natural resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Assistant Professor, Plant Bioproducts Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
4 Plant Bioproducts Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
5 Associate Professor, Plant Molecular Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
6 National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran POBox: 14965/161
چکیده [English]

Objective
Plants are very efficient in producing valuable pharmaceutical proteins. Human epidermal growth factor (hEGF) has numerous effects on various cellular systems, including wound healing, organogenesis, and so on. The present study was carried out with the aim of constructing monocotyledonous-specific vectors for hegf insertion and mass-production in a self-pollinated crop, barley, afterwards. This crop plant, with high protein yield and very low cross-pollination, is an ideal host for the production of epidermal growth factor.
 
 
Materials and methods
The hegf sequence was optimized by COOL software, based on the codon preference of the host plant, and synthesized with a specific promoter, D-hordein. The encoding sequence of signal peptide targeting protein storage organelles in barley seeds was included at the beginning of the encoding area. The synthesized gene cassette was isolated from the cloning vector pUC57Hvorhegf by SacI and HindIII and cloned in pBI121. To insert the gene cassette of interest into pGH215, due to the lack of similar restriction sites in pUC57Hvorhegf and pGH215, the intermediate vector, pBI121Gus-12, was applied. After digesting pUC57Hvorhegf and pBI121Gus-12 by SacI and KpnI, the sequence of interest was incorporated into pBI121Gus-12. Finally, the recombinant pBI121Gus-12 and pGH215 were digested with KpnI and SalI, and the gene cassette was cloned at the right border of T-DNA, behind the NOS terminator.
 
Results
Cloning accuracy and constructing pBI121Hvorhegf and pGH215Hvorhegf vectors bearing kanamycin and hygromycin, respectively, suitable for monocotyledons-crop transformation was confirmed by colony PCR, digestion pattern, and sequencing with forward and reverse primers.
 
Conclusions
The modified recombinant expression vector pGH215 with the gene of interest carrying the hygromycin gene cassette, giving a high level of ability to select transformed explants, can be used to transfer desired genes in monocotyledons and express those genes in protein storage organelles.

کلیدواژه‌ها [English]

  • Agrobacterium tumefaciens
  • Cloning
  • Monocotyledons
احسنی محمدرضا، محمدآبادی محمدرضا، اسدی فوزی و همکاران (1398) بیان ژن لپتین در بافت چربی زیرپوستی گاوهای هلشتاین با استفاده از Real Time PCR. مجله بیوتکنولوژی کشاورزی 11(1)، 150-135.
توحیدی‌نژاد فاطمه، محمدآبادی محمدرضا، اسمعیلی‌زاده کشکوئیه علی، نجمی نوری عذرا (1393) مقایسه سطوح مختلف بیان ژنRheb  در بافت های مختلف بز کرکی راینی. مجله بیوتکنولوژی کشاورزی 6(4)، 50-35.
جعفری دره در امیر حسین، محمدآبادی محمدرضا، اسمعیلی زاده کشکوئیه علی، ریاحی مدوار علی (1395) بررسی بیان ژن CIB4  در بافت‌های مختلف گوسفند کرمانی با استفاده از Real Time qPCR. مجله پژوهش در نشخوارکنندگان 4(4)، 132-119.
محمدآبادی محمدرضا (1399) بیان ژن ESR1 در بز کرکی راینی با استفاده از Real Time PCR‎. مجله بیوتکنولوژی کشاورزی 12(1)، 192-177.
محمدآبادی محمدرضا (1399) پروفایل بیانی mRNA مختص بافت ژن ESR2 در بز. مجله بیوتکنولوژی کشاورزی 12(4)،       181-167.
محمدآبادی محمدرضا، کرد محبوبه، نظری محمود (1397) مطالعه بیان ژن لپتین در بافت‌های مختلف گوسفند کرمانی با استفاده     از .Real Time PC مجله بیوتکنولوژی کشاورزی 10 (۳)، 111-122.
References
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019a) Effect of Roasted Soybean and Canola Seeds on Peroxisome Proliferator‐Activated Receptors Gamma (PPARG) Gene Expression and Cattle Milk Characteristics. Iran J Appl Anim Sci 9, 635-642.
Ahsani MR, Mohammadabadi MR, Asadi Fozi M et al. (2019b) Leptin gene expression in subcutaneous adipose tissue of Holstein dairy cattle using Real Time PCR. Agric Biotechnol J 11, 135-150 (In Persian).
Aragão FJL, Brasileiro ACM (2002) Positive, negative and marker-free strategies for transgenic plant selection. Braz J Plant Physiol 14, 01–10.
Basaran P, Rodríguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28, 153–172.
Bibi N, Fan K, Yuan S, et al. (2013) An efficient and highly reproducible approach for the selection of upland transgenic cotton produced by pollen tube pathway method. Aust J Crop Sci 7, 1714–1722.
Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol 11, 287–293.
Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol 145, 1118–1128.
Goedeke S, Hensel G, Kapusi E, et al. (2007) Transgenic barley in fundamental research and biotechnology. Transgenic Plant J 1, 104–117.
Himmelbach A, Zierold U, Hensel G, et al. (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145, 1192–1200.
Huang TK, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30, 398–409.
Ishida Y, Tsunashima M, Hiei Y, Komari T (2015) Wheat (Triticum aestivum L.) transformation using immature embryos. In: Agrobacterium protocols. Springer, 189–198.
Jafari Darehdor AH, Mohammadabadi MR, Esmailizadeh Kashkoueieh A, Riahi Madvar A         (2016) Investigating expression of CIB4 gene in different tissues of Kermani Sheep      using Real Time qPCR. J Ruminant Research 4 (4), 119-132.
Ji Q, Xu X, Wang K (2013) Genetic transformation of major cereal crops. Int J Dev Biol 57, 495–508.
Komari T, Takakura Y, Ueki J, et al. (2006) Binary vectors and super-binary vectors. Agrobacterium protocols, 15–42.
Kumlehn J, Hensel G (2009) Genetic transformation technology in the Triticeae. Breed Sci 59, 553–560.
Low LY, Yang SK, Andrew Kok D, et al. (2018) Transgenic plants: gene constructs, vector and transformation method. New visions in plant science. Intech Open London, 41–61.
Marthe C, Kumlehn J, Hensel G (2015) Barley (Hordeum vulgare L.) transformation using immature embryos. In: Agrobacterium Protocols Springer, 71–83.
Masoudzadeh SH, Mohammadabadi M, Khezri A, et al. (2020) Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of Kermani lambs. Small Rumin Res 193, e106276.
Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107, 193–232.
Mohammadabadi M (2021) Tissue-specific mRNA expression profile of ESR2 gene in goat. Agric Biotechnol J 12 (4), 167-181 (In Persian).
Mohammadabadi MR (2020) Expression of ESR1 gene in Raini Cashmere goat using Real Time PCR. Agric Biotechnol J 12 (1), 177-192 (In Persian).
Mohammadabadi MR, Kord M, Nazari M (2018) Studying expression of leptin gene in different tissues of Kermani Sheep using Real Time PCR. Agric Biotechnol J 10, 111-122 (in Persian).
Mohammadabadi MR, Tohidinejad  F (2017) Charachteristics determination of Rheb gene and protein in Raini Cashmere goat. Iran J Appl Anim Sci 7, 289-295.
Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29, 210–222.
Patel TB, Bertics PJ (2006) Epidermal growth factor: methods and protocols. Springer Science & Business Media.
Sahoo DK, Dey N, Maiti IB (2014) pSiM24 is a novel versatile gene expression vector for transient assays as well as stable expression of foreign genes in plants. PLoS One 9, e98988.
Sambrook J, Russell DW (2006) Fragmentation of DNA by sonication. Cold spring harbor protocols 2006, pdb-prot4538.
Sharma K, Babu PC, Sasidhar P, et al. (2008) Recombinant human epidermal growth factor inclusion body solubilization and refolding at large scale using expanded-bed adsorption chromatography from Escherichia coli. Protein Expr Purif 60, 7–14.
Shrawat AK, Lörz H (2006) Agrobacterium‐mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4, 575–603.
Tohidinejad  F, Mohammadabadi MR, Esmailizadeh AK, Najmi Noori A (2015) Comparison of different levels of Rheb gene expression in different tissues of Raini Cashmir goat. Agric Biotechnol J 6, 35-50.
Tzfira T, Kozlovsky SV, Citovsky V (2007) Advanced expression vector systems: new weapons for plant research and biotechnology, 1087-1089.
Zeng F, Harris RC (2014) Epidermal growth factor, from gene organization to bedside. In: Elsevier, 2–11.