کاربرد انتخاب ژنومی در بهبود برنامه‏های اصلاح نژاد مولکولی در آبزیان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشکده میگوی کشور، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)، بوشهر، ایران

2 استاد بخش علوم دامی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، ایران

3 استادیار گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، مازندران، ایران.

چکیده

هدف: با وجود اینکه آبزی پروری سریع‏ترین بخش از نظر تولید پروتئین حیوانی در جهان می‏باشد، برنامه‏های اصلاح نژاد در آبزیان نسبت به دام‏ها و گیاهان با تاخیر همراه بوده‏اند. برنامه‏های بهبود ژنتیکی آبزیان به طور عمده مبتنی بر استفاده از اطلاعات فنوتیپی و شجره‏ای افراد بر اساس اصول ژنتیک کمی بوده است. با این حال در سال‏های اخیر، روش‏های مبتنی بر اطلاعات ژنومی مانند انتخاب به کمک نشانگر (MAS) و انتخاب ژنومی (GS) به منظور بهبود صفات اقتصادی در برخی از گونه‏های آبزی مورد استفاده قرار گرفته‏اند. هدف مقاله حاضر بررسی اصول و مبانی اصلاح نژاد در آبزیان از انتخاب فنوتیپی تا انتخاب ژنومی، مزایا و محدودیت‏های آن‏ها و پیشرفت‏های تحقیقاتی اخیر در گونه‏های مختلف آبزی می‏باشد.
نتایج: انتخاب ژنومی در آبزیان از طریق افزایش صحت انتخاب، کاهش فاصله نسل، کاهش میزان همخونی، کنترل بهتر اثرات متقابل ژنتیک و محیط و انتخاب حیوانات با حساسیت کمتر به تغییرات محیطی موجب افزایش پیشرفت ژنتیکی می‏گردد. انتخاب ژنومی به ویژه برای انتخاب صفاتی که اندازه گیری آن‏ها دشوار است یا وراثت پذیری پایینی دارند برای مثال مقاومت به بیماری، مصرف خوراک، صفات تولیدمثلی و کیفیت گوشت مناسب است. اندازه جمعیت مرجع، تراکم نشانگر، طرح جفتگیری، تعداد و اندازه خانواده‏ها و تعداد نسل از عوامل موثر در صحت انتخاب ژنومی در آبزیان می‏باشند. پیشرفت‏های مداوم در زمینه فناوری‏های مقرون به صرفه تعیین ژنوتیپ به‌ ویژه تعیین ژنوتیپ توسط توالی یابی (GBS) و علم بیوانفورماتیک، ‏کاربرد سریع‏تر انتخاب ژنومی در آبزی پروری را تسهیل خواهد کرد.
نتیجه‌گیری: اگرچه انتخاب ژنومی در سال‏های اخیر برای حدود 20 گونه‏ی آبزی مورد استفاده قرار گرفته و فرصت‏هایی را برای افزایش پیشرفت ژنتیکی فراهم کرده است اما باید مزایای این روش در برنامه‏های تجاری و اقتصادی اصلاح نژاد آبزیان مورد ارزیابی قرار گیرد. انتظار می‌رود که انتخاب ژنومی در آینده به طور گسترده در اصلاح نژاد آبزیان مورد استفاده قرار گیرد و مسیر را برای توسعه پایدار این صنعت هموار سازد.

کلیدواژه‌ها


عنوان مقاله [English]

The application of genomic selection in improvement of molecular breeding programs in aquaculture

نویسندگان [English]

  • Reza Pasandideh 1
  • Mohammadreza Mohammadabadi 2
  • Majid Pasandideh 3
1 Assistant Professor, Iranian Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr, Iran.
2 Professor, Animal Science Department, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
3 Assistant Professor, Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran.
چکیده [English]

Objective
Although aquaculture is the fastest sector in terms of animal protein production in the world, breeding programs in aquatic species have been delayed compared to livestock and plants. Breeding improvement programs in aquaculture are mainly based on using phenotypic and pedigree information in quantitative genetics. However, approaches based on genomic information such as marker assistant selection (MAS) and genomic selection (GS) have been used to improve economic traits in recent years. The present paper aimed to investigate the breeding principles in aquaculture from phenotypic selection to genomic selection, their advantages and limitations, and recent advances in different aquatic species.
 
Results
Genomic selection increases genetic gain in aquaculture through increasing accuracy of selection, decreasing generation interval, decreasing inbreeding rate, better control of genetic and environmental interactions, and selection of animals with less sensitivity to environmental variation. Especially, genomic selection is suitable for difficult-to-measure or low heritability traits such as disease resistance, feed intake, reproduction traits, and carcass quality. Reference population size, marker density, mating design, number and size of families, and a number of generations are effective factors in the accuracy of genomic selection in aquaculture. Continuous advances in cost-effective technologies for genotyping especially genotyping-by-sequencing (GBS) and bioinformatics will facilitate the faster application of genomic selection in aquaculture.
 
Conclusions
Although genomic selection has been used for about 20 aquatic species in recent years and has provided opportunities for the improvement of genetic gain. However, the advantages of this method should be evaluated in commercial and economic aquatic breeding programs. It is expected that genomic selection will be widely used in aquatic breeding in the future and pave the way for the sustainable development of this industry.

کلیدواژه‌ها [English]

  • Breeding
  • Marker assistant selection
  • Genomic selection
  • Aquaculture
  • Genetic gain
 
Allal F, Nguyen NH (2022) Genomic Selection in Aquaculture Species. In: Complex Trait Prediction. Springer pp. 469-491.
Barson NJ, Aykanat T, Hindar K et al. (2015) Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 528, 405-408.
Budhlakoti N, Kushwaha AK, Rai A et al. (2022) Genomic Selection: A Tool for Accelerating the Efficiency of Molecular Breeding for Development of Climate Resilient Crops. Front Genet 13, 1-17.
Calus MP (2010) Genomic breeding value prediction: methods and procedures. Animal 4, 157-164.
Castillo-Juárez H, Campos-Montes GR, Caballero-Zamora A et al. (2015) Genetic improvement of Pacific white shrimp [Penaeus Litopenaeus vannamei]: perspectives for genomic selection. Front Genet 6, 1-5.
Dominik S, Smith JL, Conington J et al. (2017) Genetic solutions. In: Advances in Sheep Welfare. Elsevier. pp. 107-130.
Dupont-Nivet M, Vandeputte M, Haffray P et al. (2006) Effect of different mating designs on inbreeding, genetic variance and response to selection when applying individual selection in fish breeding programs. Aquaculture 252, 161-170.
Duran C, Appleby N, Edwards D et al. (2009) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4, 16-27.
Esfandyari H, Henryon M, Berg P et al. (2017) Response to selection in finite locus models with nonadditive effects. J Hered 108, 318-327.
Evans KS, van Wijk MH, McGrath PT et al. (2021) From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet 37, 933-947.
Fraslin C, Yáñez JM, Robledo D et al. (2022) The impact of genetic relationship between training and validation populations on genomic prediction accuracy in Atlantic salmon. Aquac Rep 23, 1-9.
Fuji K, Kobayashi K, Hasegawa O et al. (2006) Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254, 203-210.
Ghasemi M, Baghizadeh A, Abadi M (2010) Determination of genetic polymorphism in Kerman Holstein and Jersey cattle population using ISSR markers. Aust j basic appl 4, 5758-5760.
Gjedrem T, Robinson N, Rye M (2012) The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350, 117-129.
Gjedrem T, Rye M (2018) Selection response in fish and shellfish: a review. Rev Aquac 10, 168-179.
Gjerde B, Korsvoll A (1999) Realized selection differentials for growth rate and early sexual maturity in Atlantic salmon. Aquacult Eur 27, 73-74.
Gong J, Zhao J, Ke Q et al. (2021) First genomic prediction and genome‐wide association for complex growth‐related traits in Rock Bream (Oplegnathus fasciatus). Evol Appl 15, 523-536.
Griot R, Allal F, Phocas F et al. (2021) Optimization of genomic selection to improve disease resistance in two marine fishes, the European sea bass (Dicentrarchus labrax) and the gilthead sea bream (Sparus aurata). Front Genet 12, 1-10.
Hayes B, Goddard ME (2001) The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol 33, 1-21.
Hayes BJ, Bowman PJ, Chamberlain AJ et al. (2009) Invited review: Genomic selection in dairy cattle: Progress and challenges. J Dairy Sci 92, 433-443.
Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics, 423-447.
Houston RD, Bean TP, Macqueen DJ et al. (2020) Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 21, 389-409.
Houston RD, Davey JW, Bishop SC et al. (2012) Characterisation of QTL-linked and genome-wide restriction site-associated DNA (RAD) markers in farmed Atlantic salmon. BMC Genom 13, 1-15.
Jerry D, Purvis I, Piper L (2001) Opportunities for genetic improvement in crustacean species. In: Proc Assoc Advmt Anim Breed Genet pp. 55-58.
Jones DB, Jerry DR, Khatkar MS et al. (2014a) Determining genetic contributions to host oyster shell growth: quantitative trait loci and genetic association analysis for the silver-lipped pearl oyster, Pinctada maxima. Aquaculture 434, 367-375.
Jones DB, Jerry DR, Khatkar MS et al. (2014b) Quantitative trait loci and genetic association analysis reveals insights into complex pearl quality traits in donor silver-lipped pearl oysters. Aquaculture 434, 476-485.
Küttner E, Moghadam HK, Skúlason S et al. (2011) Genetic architecture of body weight, condition factor and age of sexual maturation in Icelandic Arctic charr (Salvelinus alpinus). Mol Genet Genom 286, 67-79.
Lillehammer M, Bangera R, Salazar M et al. (2020) Genomic selection for white spot syndrome virus resistance in whiteleg shrimp boosts survival under an experimental challenge test. Sci Rep 10, 1-13.
Lillehammer M, Meuwissen TH, Sonesson AK (2013) A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values. Genet Sel 45, 1-8.
Luo Z, Yu Y, Xiang J et al. (2021) Genomic selection using a subset of SNPs identified by genome-wide association analysis for disease resistance traits in aquaculture species. Aquaculture 539, 1-6.
Ma P, Lund MS, Aamand GP et al. (2019) Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population. J Dairy Sci 102, 7237-7247.
Meuwissen TH, Hayes BJ, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819-1829.
Moen T, Baranski M, Sonesson AK et al. (2009) Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genom 10, 1-14.
Mohammadabadi M (2016) Inter-simple sequence repeat loci associations with predicted breeding values of body weight in Kermani sheep. Genet Third Millenn 14, 4383-4390.
Mohammadabadi M, Esfandyarpoor E, Mousapour A (2017) Using inter simple sequence repeat multi-loci markers for studying genetic diversity in Kermani sheep. J res Dev 5, 1-4.
Mohammadabadi M, Oleshko V, Oleshko O et al. (2021) Using inter simple sequence repeat multi-loci markers for studying genetic diversity in Guppy fish. Turk J Fish & Aquat Sci 21, 603-613.
Mohammadifar A, Faqih Imani SA, Mohammad Abadi MR et al. (2014) The effect of TGF β 3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agric Biotechnol J 5, 125-136.
Mohammadifar A, Mohammadabadi M (2012) Application of microsatellite markers for a study of Kermani sheep genome. Iran J Appl Anim Sci 42, 337-344.
Mohammadifar A, Mohammadabadi M (2018) Melanocortin-3 receptor (mc3r) gene association with growth and egg production traits in Fars indigenous chicken. Malays Appl Biol 47, 85-90.
Moss S, Moss D (2009) Selective breeding of penaeid shrimp. In: Shellfish Safety and Quality. Elsevier pp. 425-452.
Mrode RA (2014) Linear models for the prediction of animal breeding values. Cabi.
Nadeem MA, Nawaz MA, Shahid MQ et al. (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Equip 32, 261-285.
Nejati-Javaremi A, Smith C, Gibson J (1997) Effect of total allelic relationship on accuracy of evaluation and response to selection. J Anim Sci 75, 1738-1745.
Ozaki A, Araki K, Okamoto H et al. (2012) Progress of DNA marker-assisted breeding in maricultured finfish. Bull Fisheries Res Agency 35, 31-37.
Pasandideh M, Gholizadeh M, Rahimi Mianji G (2020a) A genome‐wide association study revealed five SNPs affecting 8‐month weight in sheep. Anim Genet 51, 973-976.
Pasandideh M, Gholizadeh M, Rahimi Mianji G (2020b) Estimation of Effective Population Size and Genomic Inbreeding Coefficients in Baluchi Sheep Using Genome-Wide Single Nucleotide Polymorphisms (SNPs). Iran J Appl Anim 10, 287-295.
Pasandideh M, Mohammadabadi M, Esmailizadeh A et al. (2015) Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle. Czech J Anim Sci 60, 97-104.
Pasandideh M, Rahimi G, Hemati V (2019) Effect of Single Nucleotide Polymorphisms in IGF-1R Gene on Growth Rate Traits in Makooei Sheep. Iran J Appl Anim 9, 669-675.
Plate M, Bernstein R, Hoppe A et al. (2019) Comparison of infinitesimal and finite locus models for long-term breeding simulations with direct and maternal effects at the example of honeybees. PLoS One 14, 1-22.
Qanbari S (2020) On the extent of linkage disequilibrium in the genome of farm animals. Front Genet 10, 1304.
Robertson A (1967) The nature of quantitative genetic variation. Heritage from Mendel, 265-280.
Saura M, Caballero A, Santiago E et al. (2021) Estimates of recent and historical effective population size in turbot, seabream, seabass and carp selective breeding programmes. Genet Sel Evol 53, 1-8.
Skaarud A, Woolliams JA, Gjøen HM (2011) Strategies for controlling inbreeding in fish breeding programs; an applied approach using optimum contribution (OC) procedures. Aquaculture 311, 110-114.
Skaarud A, Woolliams JA, Gjøen HM (2014) Optimising resources and management of genetic variation in fish-breeding schemes with multiple traits. Aquaculture 420, 133-138.
Song HL, Dong T, Yan X et al. (2022) Genomic selection and its research progress in aquaculture breeding. Rev Aquac 1-18.
Song HL, Hu HX (2022) Strategies to improve the accuracy and reduce costs of genomic prediction in aquaculture species. Evol Appl 15, 578-590.
Uimari P, Tapio M (2011) Extent of linkage disequilibrium and effective population size in Finnish Landrace and Finnish Yorkshire pig breeds. J Anim Sci 89, 609-614.
Van Binsbergen R, Calus MP, Bink MC et al. (2015) Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle. Genet Sel Evol 47, 1-13.
Vu NT, Van Sang N, Phuc TH et al. (2019) Genetic evaluation of a 15-year selection program for high growth in striped catfish Pangasianodon hypophthalmus. Aquaculture 509, 221-226.
Yáñez JM, Xu P, Carvalheiro R et al. (2022) Genomics applied to livestock and aquaculture breeding. Evol Appl 15, 517-522.
Zenger KR, Khatkar MS, Jones DB et al. (2019) Genomic selection in aquaculture: application, limitations and opportunities with special reference to marine shrimp and pearl oysters. Front Genet 9, 1-19.