ارزیابی پاسخ به تنش خشکی در سطح رونویسی در برنج با استفاده از فراتحلیل داده‌های RNA-seq

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیوتکنولوژی کشاورزی، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

2 استاد، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

3 استادیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

4 دانشیار، گروه زیست‌شناسی، دانشکده علوم، دانشگاه رازی کرمانشاه، کرمانشاه، ایران.

5 استادیار ، دانشکده پزشکی دانشگاه کالیفرنیا، ریورساید، کالیفرنیا، آمریکا

چکیده

هدف: درک مکانیسم‌های مولکولی پاسخ به تنش از جمله تنش خشکی می‌تواند به‌طور قابل‌توجهی علم اصلاح مولکولی گیاهان را ارتقا بخشد. مطالعات ترنسکریپتومی می‌تواند حجم زیادی از اطلاعات را در دسترس محققان قرار دهد. ادغام چنین اطلاعاتی از منابع مختلف از طریق روش‌های آماری پیشرفته مانند فراتحلیل فرصت جدیدی برای غلبه بر پیچیدگی بیولوژیکی، شناسایی ژن‌های با بیان متفاوت (DEGs) و کسب نتایج قابل اعتمادتر، فراهم می‌آورد. مطالعه حاضر با هدف شناسایی DEGها در پاسخ به تنش خشکی با استفاده از داده‌های ترنسکریپتومی از طریق فراتحلیل داده‌های RNA-seq انجام شد.
مواد و روش‌ها: داده‌های RNA-seq از پایگاه داده EMBL-EBI دانلود شد و پس از پیش پردازش، نقشه‌یابی خوانش‌های با کیفیت بر روی ژنوم مرجع برنج با نرم افزار STAR صورت گرفت. تغییرات بیان ژن‌ها با استفاده از پکیج edgeR به‌صورت جداگانه برای هر مجموعه داده بررسی و سپس از خروجی حاصله برای فراتحلیل با استفاده از پکیج metaRNAseq استفاده شد. ژن‌های با بیان متفاوت و معنادار در پاسخ به تنش، از نظر عمکرد زیستی، مسیرهای زیستی درگیر و برهم‌کنش پروتئینی بررسی شد و در نهایت ژن‌های کلیدی در پاسخ به تنش خشکی تعیین گردید.
نتایج: مطابق نتایج فراتحلیل 6607 ژن با متوسط بیان log2FC≥|1| و FDR≤0.05 شناسایی شد که به ترتیب 3313 و 3294 از آن‌ها تحت تنش، بیانشان افزایش و کاهش یافته است. از این تعداد 162 ژن درآنالیز‌های انفرادی به‌عنوان DEG تعیین نشده بودند و تنها از طریق فراتحلیل شناسایی شدند، که این امر نشان‌دهنده قدرت آماری این روش در شناسایی ژن‌های جدید است. نتایج بررسی عملکردی DEGها نشان‌دهنده القای مسیرهای متابولیکی مختلف از جمله بیوسنتز متابولیت‌های ثانویه و اسیدهای آمینه، متابولیسم کربوهیدرات‌ها و مسیر انتقال پیام فیتوهورمون‌ها تحت تنش است. بررسی برهم‌کنش پروتئینی و شناسایی ژن‌های کلیدی نیز حاکی از نقش آن‌ها در پاسخ به تنش، فعالیت اکسیدوردوکتازی و متابولیسم اسید آمینه بود.
نتیجه‌گیری: این مطالعه می‌تواند درک ما را از مکانیسم‌های مولکولی پاسخ برنج به تنش‌ خشکی افزایش دهد و همچنین در شناسایی ژن‌های کلیدی و جدید، حتی به‌عنوان نشانگرهای مولکولی در راستای بهبود تحمل به تنش‌ خشکی در برنامه‌های اصلاحی برنج مفید باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Transcription Response to Drought Stress in Rice Using RNA-seq Meta-analysis

نویسندگان [English]

  • Shima Karami 1
  • Behrouz Shiran 2
  • Rudabeh Ravash 3
  • Hossein Fallahi 4
  • Arghavan Alisolitani 5
1 Ph.D. Student, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
2 Professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
3 Assistant Professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
4 Assistant Professor, Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
5 Assistant Professor, University of California Riverside School of Medicine, Riverside, California, USA.
چکیده [English]

Objective
Understanding the molecular mechanisms of response to stress such as drought can significantly improve the science of plant molecular breeding. Transcriptomic studies can make a large amount of information available to researchers. Integrating such data from different sources through advanced statistical methods such as meta-analysis provides a new opportunity to overcome biological complexity, identify differentially expressed genes (DEGs), and obtain more reliable results. The present study aimed to identify DEGs in response to drought stress using transcriptomic data through a meta-analysis of RNA-seq data.
Materials and methods
RNA-seq data were downloaded from the EMBL-EBI database and after preprocessing, high-quality reads were mapped on the rice reference genome with the STAR software. Differential expression genes were evaluated separately for each dataset using the edgeR package. The outputs were used for meta-analysis using the metaRNAseq package. Genes with different and significant expressions in response to drought stress were examined for functional enrichment, biological pathways, and protein interaction. Finally, hub genes were identified.
Results
According to the meta-analysis results, 6607 differential expression genes with average log2FC≥|1| And FDR≤0.05 were detected. 3313 and 3294 of them were regulated up and down, respectively, and 162 genes were not identified as DEG in individual analyzes and were identified only by meta-analysis, which shows the statistical power of this method in identifying new genes. The results of functional enrichment of DEGs indicate the induction of various metabolic pathways under stress including biosynthesis of secondary metabolites and amino acids, carbohydrate metabolism, and plant hormone signal transduction. Investigation of protein interaction and identification of hub genes also showed their role in stress response, oxidoreductase activity, and amino acid metabolism.
Conclusions
This study can increase our understanding of the molecular mechanisms of rice response to drought stress and be useful in identifying key and new genes, even as molecular markers to improve drought stress tolerance in rice breeding programs.

کلیدواژه‌ها [English]

  • Drought stress
  • RNA-seq
  • Meta-analysis
  • Rice
عرب پور رق آبادی زهرا، محمدآبادی محمدرضا، خضری امین (1400) الگوی بیانی ژن p32 در بافت‌های ران، دست، راسته و چربی پشت بره کرمانی. مجله بیوتکنولوژی کشاورزی، 13(4)، 183-200.
محمدآبادی محمدرضا (1399) بیان ژن ESR1 در بز کرکی راینی با استفاده از real time PCR‎. مجله بیوتکنولوژی کشاورزی 12(1)، 192-177.
محمدآبادی محمدرضا (1399) پروفایل بیانیmRNA مختص بافت ژن ESR2 در بز. مجله بیوتکنولوژی کشاورزی 12(4)، 184-169.
محمدآبادی محمدرضا، سفلایی محمد (1399). پروفایل بیانی mRNA مختص بافت ژن BMP15 در بز. مجله بیوتکنولوژی کشاورزی 12(3)، 208-191.
محمدآبادی محمدرضا، کرد محبوبه، نظری محمود (1397) مطالعه بیان ژن لپتین در بافت‌های مختلف گوسفند کرمانی با استفاده از real time PCR. مجله بیوتکنولوژی کشاورزی 10(3)، 122-111.
 
References
Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, NY. pp. 25-55.
Ahmad P, Jaleel CA, Sharma S (2010) Antioxidant defense system, lipid peroxidation, proline metabolizing enzymes and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russ J Plant Physiol 57(4), 509–517.
Alimadadi A, Munroe PB, Joe B, Cheng X (2020) Meta-analysis of dilated cardiomyopathy using cardiac RNA-Seq transcriptomic datasets. Genes 11(1), 60.‏
Andrews S (2017) FastQC: A quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc
Arabpour Z, Mohammadabadi M, Khezri A (2021) The expression pattern of p32 gene in femur, humeral muscle, back muscle and back fat tissues of Kermani lambs. Agric Biotechnol J 13 (4), 183-200 (In Persian).
Ashrafi-Dehkordi E, Alemzadeh A, Tanaka N, Razi H (2018) Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato. Peer J 6, e4631.‏
Benny J, Pisciotta A, Caruso T, Martinelli F (2019) Identification of key genes and its chromosome regions linked to drought responses in leaves across different crops through meta-analysis of RNA-Seq data. BMC plant boil 19(1), 1-18.
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform 30, 2114-2120.
Chan Z (2012) Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100(2), 110-115.‏
Chen N, Xu Y, Wang X et al. (2011) OsRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. Plant Cell Environ 34(1), 52-64.‏
Choudhury S, Muthusamy SK, Padaria JC, Dalal M (2021) Genome-wide identification of Ran GTPase family genes from wheat (T. aestivum) and their expression profile during developmental stages and abiotic stress conditions. Funct Integr Genom 21(2), 239-250.‏
Dobin A, Davis CA, Schlesinger F et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinform 29(1), 15-21.‏
Duan WJ, Liu ZH, Bai JF et al. (2021) Comprehensive analysis of formin gene family highlights candidate genes related to pollen cytoskeleton and male fertility in wheat (Triticum aestivum L.). BMC genom 22(1), 1-16.‏
Ereful NC, Liu LY, Greenland A et al. (2020) RNA-seq reveals differentially expressed genes between two indica inbred rice genotypes associated with drought-yield QTLs. Agron 10(5), 621.‏
Feng Y, Yin Y, Fei S (2015) Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Sci 234, 163-173.
Gai Z, Wang YU, Ding Y et al. (2020). Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci Rep 10(1), 1-13.‏
Galbiati F, Chiozzotto R, Locatelli F et al. (2016) Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice. Plant Cell Environ 39(9), 1982-1993.‏
Gundaraniya SA, Ambalam PS, Tomar RS (2020) Metabolomic profiling of drought-tolerant and susceptible peanut (Arachis hypogaea L.) genotypes in response to drought stress. ACS omega 5(48), 31209-31219.‏
He Y, Liu Y, Li M et al. (2021) The Arabidopsis SMALL AUXIN UP RNA32 Protein Regulates ABA-Mediated Responses to Drought Stress. Front Plant Sci 12:625493.
Huang L, Zhang F, Wang W et al. (2014) Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC genom 15(1), 1-16.‏
Heberle H, Meirelles GV, da Silva FR et al (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform 16, 169.
Iuchi S, Kobayashi M, Taji T et al. (2001) Regulation of drought tolerance by gene manipulation of 9‐cis‐epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27(4), 325-333.‏
Jacobsen JV, Hanson AD, Chandler PC (1986) Water stress enhances expression of an α-amylase gene in barley leaves. Plant Physiol 80(2), 350-359.‏
Jaleel CA, Gopi R, Sankar B et al. (2007) Studies on Germination, Seedling Vigour, Lipid Peroxidation and Proline Metabolism in Catharanthus roseus Seedlings under Salt Stress, S Afr J Bot 73(2), 190–195.
Kalve S, Sizani BL, Markakis MN et al. (2020) Osmotic stress inhibits leaf growth of Arabidopsis thaliana by enhancing ARF‐mediated auxin responses. New Phytol 226(6), 1766-1780.‏
Keel BN, Zarek CM, Keele JW et al. (2018) RNA-Seq Meta-analysis identifies genes in skeletal muscle associated with gain and intake across a multi-season study of crossbred beef steers. BMC genom 19(1), 1-11.‏
Kilian J, Whitehead D, Horak J, et al. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV‐B light, drought and cold stress responses.  Plant J 50(2), 347-363.‏
Kim SH, Arnold D, Lloyd A, Roux SJ (2001) Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress. Plant Cell 13(12), 2619-2630.
Klaas M, Haiminen N, Grant J et al. (2019) Transcriptome characterization and differentially expressed genes under flooding and drought stress in the biomass grasses Phalaris arundinacea and Dactylis glomerata. Ann bot 124(4), 717-730.
Koh S, Lee SC, Kim MK, (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant mol biol 65(4), 453-466.‏
Kong W, Zhong H, Gong Z et al. (2019) Meta-analysis of salt stress transcriptome responses in different rice genotypes at the seedling stage. Plants 8(3), 64.‏
Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22(4), 289-297.‏
Kurowska MM, Wiecha K, Gajek K, Szarejko I (2019) Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley. PLoS One 14(12), e0226423.‏
Li J, Zhou H, Zhang Y et al. (2020). The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Dev Cell 55(3), 367-380.‏
Li H, Li M, Wei X et al. (2017) Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol Genet Genom 292(5), 1091-1110.
Liu X, Meng P, Yang G et al. (2020) Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress. BMC genom 21(1), 1-13.‏
Lv Y, Xu L, Dossa K et al.  (2019) Identification of putative drought-responsive genes in rice using gene co-expression analysis. Bioinformation 15(7), 480.‏
Masoudzadeh SH, Mohammadabadi M, Khezri A, et al. (2020) Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of Kermani lambs. Small Rumin Res 193, e106276.
Mohammadabadi M (2021) Tissue-specific mRNA expression profile of ESR2 gene in goat. Agric Biotechnol J 12 (4), 167-181 (In Persian).
Mohammadabadi M, Masoudzadeh SH, Khezri A, et al. (2021) Fennel (Foeniculum vulgare) seed powder increases Delta-Like Non-Canonical Notch Ligand 1 gene expression in testis, liver, and humeral muscle tissues of growing lambs. Heliyon 7 (12), e08542.
Mohammadabadi M, Soflaei M (2020) Tissue-specific mRNA expression profile of BMP15 gene in goat. Agric Biotechnol J 12, 191-208 (In Persian).
Mohammadabadi MR (2020) Expression of ESR1 gene in Raini Cashmere goat using Real Time PCR. Agric Biotechnol J 12 (1), 177-192 (In Persian).
Mohammadabadi MR, Kord M, Nazari M (2018) Studying expression of leptin gene in different tissues of Kermani Sheep using Real Time PCR. Agric Biotechnol J 10, 111-122 (In Persian).
Mohammadabadi MR, Tohidinejad F (2017) Charachteristics determination of Rheb gene and protein in Raini Cashmere goat. Iran J Appl Anim Sci 7, 289-295.
Prabu G, Kawar PG, Pagariya MC, Prasad DT (2011) Identification of water deficit stress upregulated genes in sugarcane. Plant Mol Biol Rep 29(2): 291-304.
Rau A, Marot G, Jaffrézic F (2014) Differential meta-analysis of RNA-seq data from multiple studies. BMC bioinform 15(1), 1-10.‏
Rest JS, Wilkins O, Yuan W et al. (2016) Meta‐analysis and meta‐regression of transcriptomic responses to water stress in Arabidopsis. Plant J 85(4), 548-560.‏
Shaar-Moshe L, Hübner S, Peleg Z (2015) Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach. BMC Plant Biol 15(1), 1-18.‏
Shahsavari M, Mohammadabadi M, Khezri A, et al. (2021) Correlation between insulin-like growth factor 1 gene expression and fennel (Foeniculum vulgare) seed powder consumption in muscle of sheep. Anim Biotechnol 33, 1-11.
Shannon P, Markiel A, Ozier O et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. J Genome Res 13(11), 2498–2504.
Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytol 214(3), 943-951.‏
Tian T, Liu Y, Yan H et al. (2017) agriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic acids res 45(W1), W122-W129.‏
Todaka D, Matsushima H, Morohashi Y (2000) Water stress enhances β‐amylase activity in cucumber cotyledons. J Exp Bot 51(345), 739-745.‏
Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant signal behav 2(3), 135-138.‏
Van Ooijen G, Mayr G, Kasiem MMA et al. (2008) Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59(6), 1383–1397.
Vergata C, Yousefi S, Buti M et al. (2022) Meta-analysis of transcriptomic responses to cold stress in plants. Func Plant Biol (abstract). https://doi.org/10.1071/FP21230
Xue GP, McIntyre CL, Glassop D, Shorter R (2008) Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Mol Boil 67(3), 197-214.‏
Yang J, Zhang J, Wang Z, Zhu Q (2001) Activities of starch hydrolytic enzymes and sucrose‐phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot 52(364), 2169-2179.
Ye H, Liu S, Tang B et al. (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun 8(1), 1-13.‏
Yi K, Guo C, Chen D et al. (2005) Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant physiol 138(2), 1071-1082.‏
Zang A, Xu X, Neill S, Cai W (2010) Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. J exp bot 61(3), 777-789.‏