ارزیابی تنوع ژنتیکی و بررسی ساختار جمعیت با استفاده از نشانگر SNP در شرایط تنش سرمای دیررس بهاره در گندم نان (Triticum aestivum L)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای رشته ژنتیک و به نژادی گیاهی، گروه ژنتیک و به نژادی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

2 استادیار، گروه ژنتیک و به نژادی ، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و پژوهشکده فناوری تولیدات گیاهی، دانشگاه شهید باهنر کرمان، کرمان، ایران

4 استادیار، گروه تولید و ژنتیک گیاهی، پژوهشکده فناوری تولیدات گیاهی، دانشگاه شهید باهنر کرمان، کرمان، ایران

10.22103/jab.2023.21960.1501

چکیده

هدف: تنش سرمای دیررس بهاره در اوایل رشد زایشی گندم با افت ناگهانی دما در فصل بهار باعث خسارت می‌شود. تنوع ژنتیکی گیاهان، تعیین کننده پتانسیل آن‌ها برای افزایش کارایی و در نتیجه استفاده از آن‌ها در برنامه‌های اصلاحی است. این مطالعه با هدف ارزیابی ساختار جمعیت، تنوع ژنوتیپ‌های گندم و انتخاب ژنوتیپ‌های برتر در شرایط تنش سرما و نرمال انجام شد.
مواد و روش‏ها: تعداد 67 ژنوتیپ گندم نان به صورت کشت گلدانی در مزرعه در دو شرایط نرمال و تنش سرمای دیررس بهاره در قالب طرح بلوک‌های کامل تصادفی با دو تکرار مورد ارزیابی قرار گرفتند. اعمال تنش با انتقال گلدان‌ها در ابتدای مرحله زایشی به اتاق رشد با دمای ºC3- صورت گرفت. صفات فنوتیپی شامل عملکرد و اجزای عملکرد اندازه‌گیری شدند. ژنوتیپ‌یابی با استفاده از آرایه چند شکلی تک نوکلئوتیدی(SNP) با تراکم 9K صورت گرفت. تعداد 17093 نشانگر SNP در مطالعه حاضر استفاده شدند.
یافته‏ها: محتوای اطلاعات چندشکلی برای نشانگرهای SNP در محدوده 03/0 تا 38/0 با میانگین 26/0 محاسبه محاسبه شد. تجزیه و تحلیل ساختار جمعیت، ژنوتیپ‌ها را در پنج زیر‌جمعیت گروه‌بندی کرد. تجزیه و تحلیل واریانس مولکولی نشان داد که 75 درصد از واریانس مشاهده شده در جمعیت، مربوط به تفاوت‌های درون جمعیتی بود. ژنوتیپ‌های مورد مطالعه بر‌اساس نشانگرSNP به 4 گروه و بر اساس صفات فنوتیپی در شرایط نرمال و تنش به ترتیب به 5 و 6 گروه تقسیم ‌بندی شدند. ژنوتیپ های گروه اول که میانگین صفات بالاتری نسبت به سایر گروه ها در شرایط تنش داشتند، به‌عنوان ژنوتیپ‌های متحمل به سرمای دیررس بهاره معرفی گردیدند.
نتیجه‌گیری: نتایج نشان داد که صفات وزن سنبله اصلی، عملکرد دانه در بوته، وزن دانه در سنبله اصلی و وزن 100 دانه در شرایط تنش سرمای دیررس بهاره بیشترین اهمیت در گروه‌بندی را داشتند. نتایج حاصل از شاخص‌های مولکولی محاسبه شده شامل شاخص‌های نشانگری و شاخص‌های تنوع، نشان داد که نشانگرهایSNP مورد استفاده کارایی نسبتا خوبی برای محاسبه تنوع ژنتیکی در جمعیت مورد مطالعه داشتند. در تجزیه خوشه ای بر مبنای ماتریس ژنوتیپی، ژنوتیپ‌های متمحل به سرما در گروه‌های جداگانه گروه‌بندی شدند که نشان دهنده‌ی متفاوت بودن سازوکارهای تحمل در این ژنوتیپ‌ها می‌باشد. این نتایج اطلاعات مفیدی در خصوص انتخاب منابع ژنتیکی متنوع در جهت بهبود تحمل به سرما در اختیار به‌نژادگران گندم قرار می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of genetic diversity and investigation of population structure using SNP markers under late spring cold stress in bread wheat (Triticum aestivum L)

نویسندگان [English]

  • Shokoofeh Khandani 1
  • Reza Gholi Mirfakhraee 2
  • Ghasem Mohammadi Nejad 3
  • Sommayeh Sardouei-Nasab 4
1 Genetic and plant breeding department, agriculture Faculty, Tarbiat modares university Tehran Iran,
2 Genetics and Plant Breeding, College of Agriculture, Tarbiat Modares University, Tehran, Iran
3 Professor of Genetics and Plant Breeding, Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, Iran
4 Genetics and Plant Breeding, Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Objective
Late spring cold stress in the early reproductive growth of wheat causes damage due to a sudden drop in temperature. The genetic diversity of plants determines their potential to increase efficiency and, as a result, their use in breeding programs. This study was conducted with the aim of evaluating population structure, diversity of wheat genotypes, and selection of superior genotypes under cold and normal stress conditions.
Materials and methods
Sixty-seven bread wheat genotypes were evaluated through pot cultivation in the field under two normal conditions and late spring cold stress. The experiment followed a randomized complete block design with two replications. Stress was applied by transferring the pots to a growth room with a temperature of -3ºC at the beginning of the reproductive stage. Phenotypic traits, including performance and performance components, were measured. Genotyping was done using a single nucleotide polymorphism (SNP) array with 9K density. A total of 17,093 SNP markers were used in this study.
Results
The polymorphic information content for SNP markers ranged from 0.03 to 0.38, with an average of 0.26. Population structure analysis grouped the genotypes into five subpopulations. Molecular variance analysis showed that 75% of the observed variance in the population was related to intra-population differences. The studied genotypes were divided into four groups based on SNP markers and five and six groups based on phenotypic traits under normal and stress conditions, respectively. The genotypes in the first group, which exhibited higher average traits than other groups under stress conditions, were identified as tolerant to late spring cold.
Conclusions
The results indicated that main spike weight, seed yield per plant, seed weight in main spike, and weight of 100 seeds were the most important factors for grouping under late spring cold stress conditions. The calculated molecular indices, including marker indices and diversity indices, demonstrated that the SNP markers used performed relatively well in calculating genetic diversity within the studied population. In cluster analysis based on the genotypic matrix, cold-tolerant genotypes formed separate groups, indicating different tolerance mechanisms among these genotypes. These findings provide useful information for wheat breeders regarding the selection of diverse genetic resources to improve cold tolerance.

کلیدواژه‌ها [English]

  • Molecular variance analysis
  • analysis into principal components
  • clustering
  • molecular index of diversity
عسکری ناهید، باقی زاده امین، محمدآبادی محمدرضا (1389). مطالعه تنوع ژنتیکی در چهار جمعیت بز کرکی راینی با استفاده از نشانگرهای ISSR. مجله ژنتیک نوین 5، 56-49.
محمدی فر آمنه، فقیه ایمانی سید علی، محمدآبادی محمد رضا، سفلایی محمد (1392). تأثیر ژن TGFb3 بر ارزش های فنوتیپی و ارثی صفات وزن بدن در مرغ بومی استان فارس. مجله بیو تکنولوژی کشاورزی 5(4)، 136-125.
محمدی فر آمنه، محمدآبادی محمد رضا کاربرد نشانگرهای ریزماهواره برای مطالعه ژنوم گوسفند کرمانی (1390). مجله علوم دامی ایران 42(4)، 344-337.
اسدی ابوذر، عسگری کلستانی علیرضا، میرفخرایی سید رضاقلی و همکاران (1397). ارزیابی تنوع ژنتیکی ژنوتیپ های گندم نان از نظر برخی صفات مهم فیزیولوژیک تحت تنش سرمای بهاره. تنش‌های محیطی در علوم زراعی 11(1)، 171-183.
شبان نژاد مرتضی, بی همتا محمدرضا, مجیدی هروان اسلام, علی پور هادی, ابراهیمی آسا (1401). ارزیابی تنوع ژنتیکی برخی توده‌های بومی گندم نان ( Triticum aestivum L.) ایران با استفاده از تجزیه‌های آماری چند متغیره. تنش‌های محیطی در علوم زراعی 15(1)، 1-17.‎
گلی علی، صبوری حسین، جرجانی عیسی، فلاحی حسینعلی.(1395). بررسی تنوع ژنتیکی ژنوتیپ‌های مختلف گندم بهاره پاییزه شمال ایران با استفاده از نشانگر ISSR . پژوهشنامه اصلاح گیاهان زراعی ۸ (۲۰)، ۱۶۵-۱۷۴
نظری  مریم، عبدالشاهی روح‌الله (1393). ژنتیکی ارقام گندم نان (Triticum aestivum L.) از طریق صفات مورفوفیزیولوژیک و نشانگرهای مولکولیSSR  مجله بیوتکنولوژی کشاورزی 6(1)، 215-231.‎
References
Akhunov ED, Akhunova AR, Anderson OD et al. (2010) Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC genom 11, 1-22.
Alipour H, Bihamta MR, Mohammadi V et al. (2017) Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Front Plant Sci 8, 1293.
Allen AM, Barker GL, Berry ST et al. (2011) Transcript‐specific, single‐nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant biotechnol J 9, 1086-1099.
Asadi A, Askary Kelestani AR, Mirfakhraii R et al. (2018) Genetic variation of bread wheat geneotypes for some important physiological traits under chiling stress. ESCS 11, 171-183 (In Persian).
Askari N, Baghizadeh A, Mohammadabadi M (2008) Analysis of the genetic structure of Iranian indigenous Raeni cashmere goat populations using microsatellite markers. Biotechnol 2, 1-4.
Askari N, Baghizadeh A, Mohammadabadi M (2010) Study of genetic diversity in four populations of Raeini cashmere goat using ISSR markers. Modern Genet J 5, 49-56 (In Persian).
Bailey-Serres J, Parker JE, Ainsworth EA et al. (2019) Genetic strategies for improving crop yields. Nature 575, 109-118.
Baranwal D, Mishra V, Singh T (2013) Genetic diversity based on cluster and principal component analyses for yield and its contributing characters in wheat (Triticum aestivum L.). Madras Agric J 100, 320-323.
Belete Y, Shimelis H, Laing M et al. (2021) Genetic diversity and population structure of bread wheat genotypes determined via phenotypic and SSR marker analyses under drought-stress conditions. J Crop Improv. 35, 303-325.
Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172, 1165-1177.
Buckler IV ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Current opinion in plant biology 5, 107-111.
Cavanagh CR, Chao S, Wang S et al. (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS 110, 8057-8062.
Chao S, Zhang W, Akhunov E et al. (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 23, 23-33.
Charrad M, Ghazzali N, Boiteau V et al. (2012) NbClust Package. An examination of indices for determining the number of clusters.
Chen H, Xie W, He H et al. (2014) A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant 7, 541-553.
Cheong BE, Ho WWH, Biddulph B et al. (2019) Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling. Metabolomics 15, 1-19.
Cheong BE, Onyemaobi O, Wing Ho Ho W et al. (2020) Phenotyping the chilling and freezing responses of young microspore stage wheat spikes using targeted metabolome and lipidome profiling. Cells 9, 1309.
Dhillon N, Singh J, Fergany M et al. (2009) Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genet Resour 7, 291-300.
Dodig D, Zorić M, Kobiljski B et al. (2010) Assessing drought tolerance and regional patterns of genetic diversity among spring and winter bread wheat using simple sequence repeats and phenotypic data. Crop Pasture Sci 61, 812-824.
Domiciano DS, Machado LG, Figueiredo CP et al. (2021) Incidence and risk factors for osteoporotic non-vertebral fracture in low-income community-dwelling elderly: a population-based prospective cohort study in Brazil. The São Paulo Ageing and Health (SPAH) study. Osteoporosis International 32, 747-757.
El-Rawy MA, Hassan MI (2021) Assessment of Genetic Diversity in Durum and Bread Wheat Genotypes Based on Drought Tolerance and SSR Markers. Plant Breed Biotech 9, 89-103.
Elbasyoni IS, Lorenz A, Guttieri M et al. (2018) A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Sci 270, 123-130.
Eltaher S, Sallam A, Belamkar V et al. (2018) Genetic diversity and population structure of F3: 6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Front genet 9, 76.
Esmaeili H, Karami A, Hadian J et al. (2020) Genetic structure and variation in Iranian licorice (Glycyrrhiza glabra L.) populations based on morphological, phytochemical and simple sequence repeats markers. Ind Crops Prod 145, 112140.
Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7, 574-578.
Farahani S, Maleki M, Mehrabi R et al. (2019) Whole genome diversity, population structure, and linkage disequilibrium analysis of chickpea (Cicer arietinum L.) genotypes using genome-wide DArTseq-based SNP markers. Genes 10, 676.
Frederiks T, Christopher J, Sutherland M et al. (2015) Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance. J Exp Bot 66, 3487-3498.
Fuller MP, Fuller AM, Kaniouras S et al. (2007) The freezing characteristics of wheat at ear emergence. Eur J Agron 26, 435-441.
Ghasemi M, Baghizadeh A, Abadi M (2010) Determination of genetic polymorphism in Kerman Holstein and Jersey cattle population using ISSR markers. Aust j basic appl sci 4, 5758-5760.
Gholamhoseinzadeh Gooki F, Mohammadabadi M, Asadi Fozi M (2018) Polymorphism of the growth hormone gene and its effect on production and reproduction traits in goat. Iranian J Appl Anim Res 8, 653-659.
Goli A, Jorjani I, Sabouri H et al. (2016) Assessment of genetic diversity of facultative wheat genotypes belong to north of Iran using ISSR markers. J Crop Breed 8, 165-174 (In Persian).
Gooki FG, Mohammadabadi M, Fozima et al. (2019) Association of biometric traits with growth hormone gene diversity in Raini Cashmere goats. Walailak J Sci Technol 16(7), 499-508.
Gostimsky S, Kokaeva Z, Konovalov F (2005) Studying plant genome variation using molecular markers. Russian J of Genet 41, 378-388.
Granato IS, Galli G, de Oliveira Couto EG et al. (2018) snpReady: a tool to assist breeders in genomic analysis. Mol Breed 38, 1-7.
Khan MK, Pandey A, Thomas G et al. (2015) Genetic diversity and population structure of wheat in India and Turkey. AoB Plants 7.
Khodadadi M, Fotokian MH, Miransari M (2011) Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Aust J Crop Sci 5, 17-24.
Kumar D, Chhokar V, Sheoran S et al. (2020) Characterization of genetic diversity and population structure in wheat using array based SNP markers. Mol Biol Rep 47, 293-306.
Li X, Cai J, Liu F et al. (2015) Wheat plants exposed to winter warming are more susceptible to low temperature stress in the spring. J Plant Growth Regul 77, 11-19.
Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27, 209-220.
Mdluli SY, Shimelis H, Amelework AB (2020) Genetic diversity and population structure of elite drought tolerant bread wheat ('Triticum aestivum'l.) genotypes. Aust J Crop Sci 14, 1362-1371.
Mohammadabadi M, Esfandyarpoor E, Mousapour A (2017) Using inter simple sequence repeat multi-loci markers for studying genetic diversity in Kermani sheep. J res Dev 5, e154.
Mohammadifar A, Mohammadabadi M (2012) Application of microsatellite markers for a study of Kermani sheep genome. Iran J Anim Sci 42, 337-344.(In Persian)
Mohammadifar A, Mohammadabadi M (2018) Melanocortin-3 receptor (mc3r) gene association with growth and egg production traits in Fars indigenous chicken. Malays Appl Biol 47, 85-90.
Nazari M, Abdolshahi R (2014) Evaluation of genetic diversity in bread wheat cultivars (Triticum aestivum L.) using morpho-physiological traits and SSR markers. J Agric Biotechnol 6, 215-231 (In Persian).
Nazarzadeh Z, Onsori H, Akrami S (2020) Genetic diversity of bread wheat (Triticum aestivum L.) genotypes using RAPD and ISSR molecular markers. J of Genetic Res 6, 69-76.
Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583-590.
Nielsen NH, Backes G, Stougaard J et al. (2014) Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties. PLoS One 9, e94000.
Nkhoma N, Shimelis H, Laing MD et al. (2020) Assessing the genetic diversity of cowpea )Vigna unguiculata (L.) Walp.( germplasm collections using phenotypic traits and SNP markers. BMC genetics 21, 1-16.
Parker G, Fox P, Langridge P et al. (2002) Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica 124, 293-306.
Peterson GW, Dong Y, Horbach C et al. (2014) Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity 6, 665-680.
Poudel A, Thapa DB, Sapkota M (2017) Assessment of genetic diversity of bread wheat (Triticum aestivum L.) genotypes through cluster and principal component analysis. Int J Exp 11, 1-9.
Rohallah A, Mohammadreza MA, Shahin MB (2007) Kappa-casein gene study in Iranian Sistani cattle breed (Bos indicus) using PCR-RFLP. Pak J Bio. Sci 10, 4291-4294.
Saremi Rad B, Shokrpor M, Sofalian O et al. (2016) Evaluation of genetic diversity of wheat genotypes by AFLP markers. J of Crop Breed 7, 89-96.
Shabannejad M, Bihamta M-R, Majidi-Hervan E et al. (2022) Assessment of genetic diversity of some Iran bread wheat (Triticum aestivum L.) landraces using multivariate statistical analysis. ESCS 15, 1-17 (In Persian).
Shakiba E, Edwards JD, Jodari F et al. (2017) Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PloS one 12, e0172133.
Shamuyarira KW, Shimelis H, Mathew I et al. (2022) Comparative genetic diversity analysis for biomass allocation and drought tolerance in wheat. Agronomy 12, 1457.
Shete S, Tiwari H, Elston RC (2000) On estimating the heterozygosity and polymorphism information content value. Theor Popul Biol 57, 265-271.
Sönmezoğlu ÖA, Çevik E, Aksoy Terzi B (2022) Assessment of some bread wheat (Triticum aestivum L.) genotypes for drought tolerance using SSR and ISSR markers.
Spanic V, Korzun V, Ebmeyer E (2016) Assessing genetic diversity of wheat genotypes from different origins by SNP markers. Cereal Res Commun 44, 361-369.
Tehseen MM, Istipliler D, Kehel Z et al. (2021) Genetic diversity and population structure analysis of Triticum aestivum L. landrace panel from Afghanistan. Genes 12, 340.
Thakur P, Kumar S, Malik JA et al. (2010) Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany 67, 429-443.
Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotech 2, 195-212.
Valluru R, Link J, Claupein W (2012) Consequences of early chilling stress in two Triticum species: plastic responses and adaptive significance. Plant Biology 14, 641-651.
Verma H, Borah J, Sarma R (2019) Variability assessment for root and drought tolerance traits and genetic diversity analysis of rice germplasm using SSR markers. Sci Rep 9, 1-19.
Verma S, Gupta S, Bandhiwal N et al. (2015) High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS). Sci Rep 5, 1-14.
Visioni A, Tondelli A, Francia E et al. (2013) Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.). BMC genomics 14, 1-13.
Voss‐Fels K, Frisch M, Qian L et al. (2015) Subgenomic diversity patterns caused by directional selection in bread wheat gene pools. The Plant Genome 8, plantgenome2015.2003.0013.
Weir BS, Goudet J (2017) A unified characterization of population structure and relatedness. Genetics 206, 2085-2103.
You Q, Yang X, Peng Z et al. (2018) Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array. Front Plant Sci 9, 104.
Yue Y, Zhou Y, Wang Ja et al. (2016) Assessing wheat frost risk with the support of GIS: An approach coupling a growing season meteorological index and a hybrid fuzzy neural network model. Sustainability 8, 1308.
Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14, 415-421.