بررسی تنوع ژنتیکی ارقام گوجه‌فرنگی با نشانگر مولکولی ISSR

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد رشته ژنتیک و به‌نژادی گیاهی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 : استادیار ، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

10.22103/jab.2024.20927.1453

چکیده

هدف: این مطالعه با هدف بررسی میزان تنوع ژنتیکی ارقام گوجه‌فرنگی در ایران انجام شد. همچنین در این پژوهش کارآیی و قابلیت نشانگر مولکولی ISSR در ارزیابی تنوع ژنتیکی گوجه‌فرنگی سنجیده شد.
مواد و روش‌ها: تعداد 99 رقم گوجه‌فرنگی شامل ارقام پیشتر‌ رایج، رایج و در حال ارزیابی جهت کشت در ایران، با استفاده از 20 آغازگر ISSR مورد ارزیابی قرار گرفتند. برای این منظور DNA استخراج ‌شده از برگهای جوان پس از تعیین کمیت و کیفیت، طی واکنش زنجیره‌ای پلی‌مراز تکثیر شدند. جداسازی قطعات تکثیر شده حاصل از PCR از طریق الکتروفورز افقی بر روی ژل آگارز انجام شد. رنگ‌آمیزی ژل به‌وسیله‌ اتیدیوم بروماید صورت گرفت. تصویربرداری از ژل پس از تابانیدن نور UV به‌منظورر آشکار سازی نوارها، انجام شد. اطلاعات بدست‌آمده از تصاویر، به‌وسیله‌ نرم‌افزار‌های آماری تجزیه و تحلیل شدند.
نتایج: از میان 20 آغازگر مورد استفاده در این پژوهش 17 آغازگر چندشکل بودند و در مجموع 275 باند چندشکل با اندازه نوار‌های بین 250 تا 3000 جفت باز تولید کردند. چندشکلی متوسط 97 درصد برآورد شد و نه آغازگر 100 درصد چندشکلی نشان دادند. بررسی معیار‌های کارایی آغازگر‌ها نشان داد آغازگر UBC 876 بیشترین مقدار شاخص نشانگری، محتوای اطلاعات چندشکلی، نسبت چندشکلی مؤثر و قدرت تفکیک بالا را داشته و درنتیجه عملکرد خوبی در تمایز ارقام دارد. ضریب تشابه جاکارد به‌طور میانگین 41/0 برآورد شد. بیشترین شباهت ژنتیکی بین ارقامH1423 و Kimia با مقدار 96/0 و کمترین شباهت ژنتیکی بین ارقام Lina و Pil ZTP1 با مقدار 13/0 بود. در تجزیه خوشه‌ای بر اساس ضریب تشابه جاکارد از روش UPGMA استفاده شد و بر این اساس ارقام به پنج خوشه تقسیم شدند. با توجه به تجزیه واریانس مولکولی (AMOVA) تمایز بین گروه‌های تشکیل شده معنی‌دار بود. در این مطالعه حدود 35 درصد از تنوع داده‌ها توسط دو مؤلفه اول و دوم توجیه شد. طبق تجزیه به مختصات اصلی که مطابقت زیادی با نتایج تجزیه خوشه‌ای داشت، ارقام به پنج گروه تقسیم‎بندی شدند. فاصله هندسی میان ژنوتیپ‌ها‌ در نمودار و عدم همپوشانی گروه‌ها نشان‌دهنده وجود تفاوت ژنتیکی بین آنها بود. دو رقم Lina و ZTP8 هرکدام به‌تنهایی در یک گروه قرار گرفتند و بیشترین فاصله‌ ژنتیکی از سایر ارقام را داشتند.
نتیجه‌گیری: این مطالعه میزان تنوع ژنتیکی ارقام گوجه فرنگی در ایران را نسبتا زیاد ارزیابی کرد. نشانگر ISSR با آشکارسازی چندشکلی زیاد نشان داد تکنیکی کارآمد و سودمند جهت بررسی تنوع ژنتیکی و تفکیک ژنوتیپ‎های گوجه‌فرنگی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic diversity of tomato's cultivars assessed through ISSR marker

نویسندگان [English]

  • Zohreh Heydari-Tootshami 1
  • Hooman Salari 2
1 Department of Plant Production and Genetics, Faculty of Sciences and Agricultural Engineering, Razi University, Kermanshah, Iran
2 Department of Plant Production and Genetics, Faculty of Sciences and Agricultural Engineering, Razi University, Kermanshah, Iran
چکیده [English]

Objective: This study was conducted to investigate the genetic diversity of tomato’s cultivars in Iran. Moreover, the efficiency and the application of ISSR molecular markers in evaluating tomato diversity were assessed.
Materials and Methods: Ninety-nine tomato cultivars, including previously popular, prevalent and cultivars under study for cultivation in Iran were evaluated. Accordingly, 20 ISSR primers were practiced. DNA isolation were carried out using the fresh leaf samples and then determined the quantity and quality of extracted DNA. After PCR, the amplicons were separated by horizontal electrophoresis. The gels were stained with ethidium bromide and visualized in a UV transilluminator for subsequent analysis in digitalized images. The obtained information was analyzed via statistical software.
Results: Amongst 20 primers were applied, the 17 primers were polymorphic. They have made 275 polymorphic amplicons which size's varied from 250 to 3000 base pair (bp). The average polymorphism rate was 97% and nine primers were 100% polymorphic. Having high polymorphic information content, marker index, effective multiplex ratio, and resolution power, UBC 879 primer was properly effective in differentiating the cultivars. The mean Jaccard similarity coefficient was 0.41. The highest genetic similarity was observed between cv. H1423 and cv. Kimia while the lowest genetic similarity was between cv. Lina and cv. Pil ZTP1; 0.96 and 0.13 respectively. The UPGMA algorithm was applied in cluster analysis based on Jaccard similarity coefficient. This analysis grouped cultivars into five clusters. According to the analysis of molecular variance (AMOVA), the distinction between the formed groups was significant. In this study about 35% of the data variation was explained by the first and second components. The overall grouping pattern of clustering corresponds with principal component analysis. The cultivars were divided into five groups. By providing spatial representation of relative genetic distances among individuals, PCA analysis determined the consistency of differentiation among cultivars. cv. Lina and cv. ZTP8 were placed in one group alone and have the greatest genetic distance from other varieties.
Conclusions: This research claimed that Iranian tomato cultivars to some extent have high genetic diversity. In addition, it has been shown that ISSR molecular markers are appropriate for investigating the genetic diversity amongst tomato genotypes due to generation of high level of polymorphism. Thus, these markers have substantial efficiency in distinguishing tomato genotypes.

کلیدواژه‌ها [English]

  • Iran
  • Microsatellite
  • Cluster analysis
  • Solanum lycopersicum L
بهادر یاسر، محمدآبادی محمدرضا، خضری امین و همکاران (1395) مطالعه تنوع ژنتیکی جمعیتهای زنبور عسل استان کرمان با استفاده از نشانگرهای ISSR. پژوهش‌های تولیدات دامی 13، 192-186.
پورابوقداره علیرضا، اطمینان علیرضا، شوشتری لیا، ملکی تبریزی ندا (1398) ارزیابی مقایسه‌ای نشانگرهای CBDP و SCoT در بررسی تنوع ژنتیکی موجود در توده‌های مختلف Aegilops. مجله بیوتکنولوژی کشاورزی 11(4)، 153-174.
حسینی فاطمه، نیک نژاد آزاده، سرخی لله لو بهزاد و همکاران (1402) ارزیابی تنوع ژنتیکی گوجه‌فرنگی (lycopersicum L. Solanum) مبتنی بر مقایسه کارآیی دو نشانگر SSR وISSR . مجله بیوتکنولوژی کشاورزی 15(2) 63-82.
عسکری ناهید، باقی زاده امین، محمدآبادی محمدرضا (1389) مطالعه تنوع ژنتیکی در چهار جمعیت بز کرکی راینی با استفاده از نشانگرهای ISSR. مجله ژنتیک نوین 5، 56-49.
مدرس کیا مهدیه، درویش زاده رضا، مدرس کیا محسن، حاتمی ملکی حمید (1401) استفاده از تجزیه ارتباطی برای شناسایی نشانگرهای ISSR پیوسته با ویژگیهای مرفولوژیکی در گیاه دارویی زنیان (Trachyspermum copticum). مجله بیوتکنولوژی کشاورزی 14(4) 85-102.
میرزائی سپیده، سالاری هومن (1400) بررسی تنوع ژنتیکی ارقام گوجه‌فرنگی با استفاده از نشانگرSCoT‎. مجله بیوتکنولوژی کشاورزی 13(4)، 101-120.
هناره مهشید، عبدالهی مندولکانی بابک، دورسون آتیلا (1397) تجزیه‌ی ارتباط صفات ریخت شناختی با نشانگرهای ISSR در گوجه‌فرنگی. علوم باغبانی ایران 49(1)، 171-181.
 
 
References
Aguilera JG, Pessoni LA, Rodrigues GB et al. (2011) Genetic variability by ISSR markers in tomato (Solanum lycopersicon Mill). Rev Bras Ciências Agrárias 6(2), 243-252.
Archak S, Karihaloo JL, Jain A (2002) RAPD markers reveal narrowing genetic base of Indian tomato cultivars. Curr Sci 10, 1139-1143.
Askari N, Baghizadeh A, Mohammadabadi MR (2010) Study of genetic diversity in four populations of Raeini Cashmere goat using ISSR markers. Modern Genet J 5(2), 49-56 (In Persian).
Bahador Y, Mohammadabadi M, Khezri A et al (2016) Study of genetic diversity in honey bee populations in Kerman province using ISSR markers. Res Anim Prod (Sci Res) 7(13), 192-186 (In Persian).
Barrios-Masias FH, Jackson LE (2014) California processing tomatoes: Morphological, physiological and phenological traits associated with crop improvement during the last 80 years. Eur J Agron 53,45-55.
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3), 314.
Bredemeijer G, Cooke R, Ganal M et al. (2002) Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor Appl Genet 105(6), 1019-1026.
Bornet B, Goraguer F, Joly G, Branchard M1 (2002) Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45, 481-484.
Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1(4), 19-21.
Denduangboripant J, Setaphan S, Suwanprasart W, Panha S (2010) Determination of local tobacco cultivars using ISSR molecular marker. Chiang Mai J Sci 37(2), 293-303.
Dong S, Shentu X. Pan Y et al (2011) Evaluation of genetic diversity in the golden apple snail, Pomacea canaliculata (Lamarck), from different geographical populations in China by inter simple sequence repeat (ISSR). Afr J Biotechnol 10(10), 1777-1783.
Hernandez-Ibanez L, Sahagun-Castellanos J, Rodriguez-Perez JE, Pena-Ortega MG (2017) Prediction of fruit yield and firmness of tomato hybrids with BLUP and RR-BLUP using ISSR molecular markers. Rev Chapingo Ser Hortic 23(1), 21-34.
Henareh M, Dursun A, Abdollahi-Mandoulakani B, Kamil Haliloğlu (2016) Assessment of genetic diversity in tomato landraces using ISSR markers. Genetika 48(1), 25-35.
Hosseini F, Niknejad A, Sorkhilaleloo B et al (2023) Valuation of genetic diversity of tomato (Solanum lycopersicum L.) based on the comparison of ISSR and SSR marker efficiency. Agric Biotech J 15(2), 63-82 (In Persian).
Kayis SA, Hakki EE, Pinarkara E (2010) Comparison of effectiveness of ISSR and RAPD markers in genetic characterization of seized marijuana (Cannabis sativa L) in Turkey. Afr J Agric Res 5(21), 2925-2933.
Kiani G, Siahchehreh M (2018) Genetic diversity in tomato varieties assessed by ISSR markers. Int J Veg Sci 24(4), 353-360.
Kochieva EZ, Ryzhova NN, Khrapalova IA, Pukhalskyi VA (2002) Genetic diversity and phylogenetic relationships in the genus Lycopersicon (Tourn.) Mill as revealed by inter-simple sequence repeat (ISSR) analysis. Russ J Genet 38, 958-966.
Lijun O, Xuexiao Z (2012) Inter simple sequence repeat analysis of genetic diversity of five cultivated pepper species. Afr J Biotechnol 11, 752-757.
López‐Ráez JA, Charnikhova T, Gómez‐Roldán V et al. (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178, 863-874.
Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80, 437-448.
Mirzaei S, Salari H (2021) Study on the genetic diversity of tomato’s cultivars via SCoT marker. Agric Biotech J 13(4), 101-120 (In Persian).
Modareskia M, Darvishzadeh R. Modares M, Hatami Maleki H (2022) Implementation of association mapping for identification of ISSR markers linked with morphological characteristics of Ajowan (Trachyspermum copticum). Agric Biotech J 14(4), 85-102 (In Persian).
Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants salient statistical tools and considerations. Crop sci 43(4), 1235-1248.
Pour-Aboughadareh A, Etminan A, Shooshtari L, Maleki-Tabrizi N (2020) Comparative assessment of SCoT and CBDP markers for investigation of genetic diversity existing in different aegilops species. Agric Biotech J 11(4), 153-174 (In Persian).
Powell W, Morgante M, Andre C et al. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3), 225-238.
Saad YM, Rashed MA, Atta AH, Ahmed NE (2012) Genetic diversity among some tilapia species based on ISSR markers. Life Sci J 9(4), 4841-4846.
Shahlaei A, Torabi S, Khosroshahli M (2014) Efficacy of SCoT and ISSR markers in assessment of tomato (Lycopersicum esculentum Mill) genetic diversity. Int J Biosci 5(2), 14-22.
Shazdehahmadi M and Kharrazi M (2016) Application of ISSR Molecular Markers for Genetic Diversity Study of Some Tobacco Genotypes. Plant Genet Res 2(2), 33-46.
Stolpovsky YA, Ahani Azari M, Evsukov A.N et al (2011) Comparison of ISSR polymorphism among cattle breeds. Russ J Genet 47, 189-200.
Terzopoulos PJ, Bebeli PJ (2008) DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L) landraces. Sci Hortic 116, 354-361.
Tikunov YM, Khrustaleva LI, Karlov GI (2003) Application of ISSR markers in the genus Lycopersicon. Euphytica 131, 71-81.
Vargas JEE, Aguirre NC, Coronado YM (2020) Study of the genetic diversity of tomato (Solanum spp) with ISSR markers. Revista Ceres 67, 199-206.
Vargas-Ponce O, Perez-Alvarez LF, Zamora-Tavares P, Rodriguez A (2011) Assessing genetic diversity in Mexican husk tomato species. Plant Mol Biol Report 29, 733-738.
Wang T, Zhang Z, Zhu H et al. (2020) Phenotypic diversity and genome-wide association mapping of earliness-related traits in cultivated tomato (Solanum Lycopersicum L.). Sci Hortic 264, 109-194.
Williams CE, Clair DAS (1993) Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36, 619-630.
Zamani P, Akhondi M, Mohammadabadi M (2015). Associations of inter-simple sequence repeat loci with predicted breeding values of body weight in sheep. Small Rumin Res 132, 123-127.
Zietkiewicz Ewa, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genom 20, 176-183.