مدل سازی و مطالعه باززایی آزمایشگاهی در پرورش لوبیا با استفاده از شبکه های عصبی مصنوعی و الگوریتم های یادگیری ماشینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده علوم کامپیوتر و فناوری اطلاعات، دانشگاه کالینگا، نایا رایپور، چاتیسگار، هند.

2 استاد، دانشکده علوم کامپیوتر و فناوری اطلاعات، دانشگاه کالینگا، نایا رایپور، چاتیسگار، هند.

10.22103/jab.2024.22740.1538

چکیده

هدف: در حوزه ارتقای بیوتکنولوژیکی لوبیاهای معمولی، با توجه به دشواری ذاتی بازسازی این محصول در محیط‌های آزمایشگاهی، یک چالش ضروری در ابداع یک استراتژی قابل اعتماد و مؤثر بازسازی در شرایط آزمایشگاهی نهفته است. این تحقیق، با هدف پرداختن به این چالش، از قدرت مدل‌های یادگیری ماشین (ML)، به‌ویژه با استفاده از الگوریتم‌هایی برای شبکه‌های عصبی مصنوعی (ANN) استفاده می‌کند. هدف اصلی ایجاد یک فرآیند بازسازی آزمایشگاهی کارآمد و قابل تکرار همزمان با بهینه سازی و پیش بینی نتایج آینده است.
مواد و روش‌ها: این مطالعه متغیرهای مختلفی مانند ژنوتیپ لوبیا، ریزنمونه‌ها و دوزهای مختلف 6-benzylaminopurine (BAP)  و CuSO4 را در بر می‌گیرد. یک شبکه عصبی رگرسیون مکرر (RRNN) برای مدل‌سازی و پیش‌بینی نتایج بازآفرینی محصول در شرایط آزمایشگاهی، به‌ویژه بر روی لوبیاهای معمولی استفاده ‌شد. تنظیم تجربی شامل آماده سازی جنین های لوبیا با 10، 15 و 20 میلی گرم در لیتر BAP به مدت 25 روز، و به دنبال آن رشد در محیط پس از تیمار شامل 3/0، 6/0، 9/0، و 2/1 میلی گرم در لیتر BAP به مدت 7 هفته بود. متعاقبا، اپیس پلومولار برای بازسازی در شرایط آزمایشگاهی جدا شد. قابل ذکر است، مدل RRNN  نیز با یک الگوریتم ژنتیک (GA) یکپارچه شد تا فرآیند بازسازی را بیشتر بهینه کند.
نتایج: نتایج با RRNN برابر با 061/0، که کمترین میانگین مربعات خطا را نشان می‌دهد قانع کننده بود و این امر نشان دهنده دقت پیش بینی برتر در بازسازی کل است. در مقایسه، مدل‌های رگرسیون بردار پشتیبان (SVR)، جنگل تصادفی (RF) و تقویت گرادیان شدید (XGB) مقادیر MSE بالاتری را به ترتیب برابر با 081/0، 081/0 و 097/0 نشان دادند. این یافته‌ها بر اثربخشی الگوریتم RRNN تأکید می‌کند، که از سایر مدل‌ها در همه پارامترها بهتر عمل می‌کند.
نتیجه‌گیری: عملکرد برتر RRNN کاربرد بالقوه آن را در پیش‌بینی دقیق در مورد بازسازی لوبیا نشان می‌دهد. در زمینه یک برنامه اصلاح مشترک لوبیا، این نتایج را می‌توان برای بهینه سازی و پیش بینی روش های کشت بافت گیاهی مهار کرد و در نتیجه تکنیک‌های بیوتکنولوژیکی مورد استفاده در کشت لوبیا معمولی را تقویت کرد. ادغام مدل‌هایML، به‌ویژه RRNN، به‌عنوان یک راه امیدوارکننده برای پیشبرد استراتژی‌های بازسازی محصول و کمک به کارایی مداخلات بیوتکنولوژیکی در کشاورزی است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and studying in vitro regeneration in common bean breeding using artificial neural networks and machine learning algorithms

نویسندگان [English]

  • Kumar Shwetabh 1
  • Asha Ambhaikar 2
1 Assistant Professor, Faculty of CS & IT, Kalinga University, Naya Raipur, Chhattisgarh, India.
2 Professor, Faculty of CS & IT, Kalinga University, Naya Raipur, Chhattisgarh, India.
چکیده [English]

In the realm of biotechnological enhancement of common beans, an imperative challenge lies in devising a reliable and effective in vitro regeneration strategy, given the inherent difficulty of regenerating this crop in laboratory settings. This research, aiming to address this challenge, leverages the power of Machine Learning (ML) models, specifically employing algorithms for Artificial Neural Networks (ANN). The primary objective is to establish an efficient and repeatable in vitro regeneration process while simultaneously optimizing and predicting future outcomes. The study incorporates various variables such as bean genotype, explants, and different doses of 6-benzylaminopurine (BAP) and CuSO4. A Recurrent Regression Neural Network (RRNN) is employed to model and anticipate the results of in vitro crop regeneration, specifically focusing on common beans. The experimental setup involves preconditioning common bean embryos with 10, 15, and 20 mg/L BAP for 25 days, followed by growth in a post-treatment environment comprising 0.3, 0.6, 0.9, and 1.2 mg/L BAP for 7 weeks. Subsequently, the plumular apice is isolated for in vitro regeneration. Notably, the RRNN model is also integrated with a Genetic Algorithm (GA) to optimize the regeneration process further. The results are compelling, with RRNN exhibiting the lowest Mean Squared Error (MSE) of 0.061, signifying superior predictive accuracy in total regeneration. In comparison, Support Vector Regression (SVR), Random Forest (RF), and Extreme Gradient Boosting (XGB) models exhibit higher MSE values of 0.081, 0.081, and 0.097, respectively. These findings underscore the efficacy of the RRNN algorithm, outperforming other models across all parameters. The superior performance of RRNN suggests its potential application in making precise predictions regarding common bean regeneration. In the context of a common bean breeding program, these outcomes can be harnessed to optimize and predict plant tissue culture methods, thereby enhancing biotechnological techniques employed in the cultivation of common beans. The integration of ML models, particularly RRNN, stands as a promising avenue for advancing crop regeneration strategies and contributing to the efficiency of biotechnological interventions in agriculture.

کلیدواژه‌ها [English]

  • Breeding
  • RNN
  • Machine Learning
  • Genetic Algorithm
  • Common Bean
Aasim M, Ayhan A, Katırcı R, et al. (2023) Computing artificial neural network and genetic algorithm for the feature optimization of basal salts and cytokinin-auxin for in vitro organogenesis of royal purple (Cotinus coggygria Scop). Ind Crops Prod 199, 116718.
Aasim M, Katirci R, Baloch FS, et al. (2022) Innovation in the breeding of common bean through a combined approach of in vitro regeneration and machine learning algorithms. Front Genet 13, 1-13.
Bidabadi SS, Jain SM (2020) Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 9(6), 1-20.
Blair MW, Cortés AJ, Farmer AD, et al. (2018) Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PloS one 13(3), 1-21.
Fallah Ziarani M, Tohidfar M, Navvabi M (2022) Modeling and optimizing in vitro percentage and speed callus induction of carrot via Multilayer Perceptron-Single point discrete GA and radial basis function. BMC Biotechnol 22(1), 1-12.
Hesami M, Daneshvar MH, Yoosefzadeh-Najafabadi M (2018) Establishment of a protocol for in vitro seed germination and callus formation of Ficus religiosa L., an important medicinal plant. Jundishapur J Nat Pharm Prod 13(4), 1-8.
Hesami M, Jones AMP (2020) Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl Microbiol Biotechnol 104, 9449-9485.
Hesami M, Naderi R, Tohidfar M, et al. (2019) Application of adaptive neuro-fuzzy inference system-non-dominated sorting genetic Algorithm-II (ANFIS-NSGAII) for modeling and optimizing somatic embryogenesis of Chrysanthemum. Front Plant Sci 10, 869, 1-12.
Hesami M, Naderi R, Tohidfar M, et al. (2020) Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study. Plant Methods 16, 1-15.
Jafari M, Daneshvar MH (2023) Prediction and optimization of indirect shoot regeneration of Passiflora caerulea using machine learning and optimization algorithms. BMC Biotechnol 23(1), 1-12.
Küçükrecep A, Tekdal D (2022) Machine Learning Applications for Plant Biotechnology: Modeling of the Plant Tissue Culture Procedures with Artificial Neural Networks. J Kadirli Fac Appl Sci 2(2), 306-315.
Kumari A, Baskaran P, Plačková L, et al. (2018) Plant growth regulator interactions in physiological processes for controlling plant regeneration and in vitro development of Tulbaghia simmleri. J Plant Physiol 223, 65-71.
Kumari P, Singh S, Yadav S, et al. (2021) Influence of different types of explants in chickpea regeneration using thidiazuron seed-priming. J Plant Res 134(5), 1149-1154.
Nadeem MA, Gündoğdu M, Ercişli S, et al. (2019) Uncovering phenotypic diversity and DArTseq marker loci associated with antioxidant activity in common bean. Genes 11(1), 1-17.
Nadeem MA, Karaköy T, Yeken MZ, et al. (2020) Phenotypic characterization of 183 Turkish common bean accessions for agronomic, trading, and consumer-preferred plant characteristics for breeding purposes. Agronomy 10(2), 1-20.
Niazian M, Sadat-Noori SA, Abdipour M, et al. (2018) Image processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in ajowan (Trachyspermum ammi (L.) Sprague). In Vitro Cell Dev Biol Plant 54, 54-68.
Özkan H, Aasim M (2019) Potential of pretreated explants of peanut (Arachis hypogeae Linn.) to micropropagation under in vitro conditions. Pak J Agric Sci 56(3), 775-780.
Türkoğlu A, Bolouri P, Haliloğlu K, et al. (2023) Modeling Callus Induction and Regeneration in Hypocotyl Explant of Fodder Pea (Pisum sativum var. arvense L.) Using Machine Learning Algorithm Method. Agronomy 13(11), 1-17.
Vanlauwe B, Hungria M, Kanampiu F, et al. (2019) The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future. Agric Ecosyst Environ 284, 1-13.
Yu Y, Liu D, Liu C, et al. (2021) In vitro regeneration of Phaseolus vulgaris L. via direct and indirect organogenesis. Plant Biotechnol Rep 15(3), 279-288.