استفاده از هوش مصنوعی برای افزایش اثربخشی اصلاح نباتات برای توسعه محصولات غذایی هوشمند مقاوم در برابر آب و هوا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم کامپیوتر و فناوری اطلاعات، دانشگاه کالینگا، رایپور، هند.

2 پژوهشگر، گروه علوم کامپیوتر و فناوری اطلاعات، دانشگاه کالینگا، رایپور، هند

چکیده

هدف: کشت محصولات همیشه هدف اولیه عملیات کشاورزی است. با این حال، سیستم‌های کشاورزی در سراسر جهان به دلیل تغییرات آب و هوایی و تعداد فزاینده افرادی که در سراسر جهان به غذا نیاز دارند، تحت فشار فزاینده‌ای قرار دارند. مقابله با تغییرات اقلیمی، تولید محصولات بیشتر، حفاظت از محیط زیست، و سازگاری با شرایط متغیر برای اطمینان از ادامه رشد جمعیت جهان دشوار شده است. محصولات غذایی هوشمند مقاوم در برابر آب و هوا (CRSFC)، که بخش مهمی از حفظ محیط زیست در سطح جهانی است نیز برای کنترل خروجی زیست توده مورد نیاز است. انتخاب‌های خالص، انتخاب انبوه، اصلاح مجدد متقابل، انتخاب مکرر برای بهبود CRSFC کشاورزی محدود و زمان بر هستند. برای رشد انواع محصولات جدید و بهتر به فرآیندهای انتخاب دقیق نیاز است. نیاز فوری به تسریع فرآیند پرورش CRSFC با استفاده از هوش مصنوعی برای تکرار برخی از ویژگی‌های هوش انسانی با استفاده از فناوری وجود دارد. هوش مصنوعی به دلیل آموزش شبکه عصبی و ماژول طبقه بندی، قابلیت‌های محاسباتی قابل توجه و طیف گسترده‌ای از ابزارها و روش‌های جدید را برای اصلاح گیاهان (PB) ارائه می‌دهد.
نتایج: این بررسی استفاده از فناوری هوش مصنوعی را در شیوه‌های اصلاحی فعلی برای رسیدگی به چالش‌ها در فنوتیپ‌سازی در مقیاس بزرگ و تجزیه و تحلیل عملکرد ژن مورد بحث قرار می‌دهد. الگوریتم‌های هوش مصنوعی بررسی سریع داده‌های ژنتیکی، یافتن روندهای پیچیده و ساخت مدل‌های پیش‌بینی‌کننده را برای محققان آسان می‌کند که به اصلاح محصول و انتخاب سودمندترین ویژگی‌ها کمک می‌کند. همچنین بررسی خواهد کرد که چگونه پیشرفت‌ها در فناوری‌های هوش مصنوعی با ترویج استفاده گسترده از اطلاعات محیطی، فرصت‌های جدیدی را برای پرورش بعدی ایجاد می‌کنند. یافتن همبستگی ژن با صفت با روش‌های اصلاحی که اکنون داریم دشوار است. این کار استفاده موثر از فنوتیپ، ژنومیک و محیط زیست با حجم بالا را دشوارتر می‌کند.
نتیجه گیری: این مقاله استفاده از هوش مصنوعی را به عنوان روشی ارجح برای بهبود قابلیت اطمینان فنوتیپ، ژنوتیپ و اطلاعات محیطی با حجم بالا مورد بحث قرار می‌دهد. علاوه بر این، روش‌ها و موانع در حال ظهور در ادغام داده‌های محاسباتی مالتی‌اومیکس بزرگ را بررسی می‌کند. از این رو، ترکیب هوش مصنوعی با اومیکس ممکن است کشف سریع ژن را تسهیل کند و در نهایت ابتکارات بهبود کشاورزی را تسریع بخشد.

کلیدواژه‌ها


عنوان مقاله [English]

Utilizing AI to enhance the effectiveness of plant breeding for the development of climate-resilient smart food crops

نویسندگان [English]

  • Divya Divya 1
  • Yalakala Dinesh Kumar 2
1 Department of CS & IT, Kalinga University, Raipur, India.
2 Research Scholar, Department of CS & IT, Kalinga University, Raipur, India.
چکیده [English]

Objectives
Growing crops is always the primary goal of agricultural operations. Still, worldwide agricultural systems are under increasing stress because of climate change and the growing number of people worldwide who need food. Dealing with climate change, making crops that produce more, protecting the environment, and adapting to changing conditions have become difficult to ensure that the world's population can keep growing. Climate-resilient smart Food Crops (CRSFC) are also needed to control biomass output, a crucial part of keeping the environment working properly globally. Pure-line selections, mass selection, back cross breeding, recurrent selection for improving agricultural CRSFC are limited and time-consuming. Careful selection processes are needed to grow new and better crop types. There is an urgent need to accelerate the process of CRSFC breeding by using artificial intelligence to replicate some features of human intelligence using technology. AI offers significant computing capabilities and a wide range of novel instruments and methods for foreseeable plant breeding (PB) due to the neural network training and classification module.

Results
This review will discuss the use of AI technology in current breeding practices to address challenges in large-scale phenotyping and gene functionality analysis. AI algorithms make it easy for researchers to quickly look at genetic data, find complicated trends, and build predictive models that help with crop breeding and selecting the most beneficial features. It will also explore how advancements in AI technologies create fresh possibilities for subsequent breeding by promoting the widespread utilization of envirotyping information. It is hard to connect gene to trait with the breeding methods we have now. This makes it harder to use high-volume field phenotyping, genomics, and enviromics effectively.

Conclusions
This paper discusses the use of AI as the preferred a method for improving the reliability of high-volume crop phenotyping, genotyping, and envirotyping information. Additionally, we examine the emerging methodologies and obstacles in integrating large multi-omics computational data. Hence, combining AI with "omics" might facilitate swift gene discovery and ultimately expedite agricultural enhancement initiatives.

کلیدواژه‌ها [English]

  • CRSFC
  • Breeding
  • Agriculture
  • Artificial Intelligence
  • Genotyping
Altman A, Fan L, Foyer C, et al. (2021) Past and future milestones of plant breeding. Trends Plant Sci 26(6), 530-538.
Angin P, Anisi MH, Göksel F, et al. (2020) Agrilora: a digital twin framework for smart agriculture. J Wirel Mob Netw Ubiquitous Comput Dependable Appl 11(4), 77-96.
Camgözlü Y, Kutlu Y (2023) Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Natural and Engineering Sciences 8(3), 214-232.
Cortés AJ, López-Hernández F, Blair MW (2022) Genome–environment associations, an innovative tool for studying heritable evolutionary adaptation in orphan crops and wild relatives. Front Genet 13, e910386.
Dossa K, Diouf D, Wang L, et al. (2017) The emerging oilseed crop Sesamum indicum enters the "Omics" era. Front Plant Sci 8, e1154.
El Bilali H, Allahyari MS (2018) Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Inf Process Agric 5(4), 456-464.
Esposito S, Carputo D, Cardi T, Tripodi P (2019) Applications and trends of machine learning in genomics and phenomics for next-generation breeding. Plants 9(1), e34.
Farooq MS, Uzair M, Raza A, et al. (2022) Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Front Plant Sci 13, e927535.
Ghotbaldini H, Mohammadabadi MR, Nezamabadi-pour H, et al. (2019) Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed. Acta Scientiarum Anim Sci 41, e45282.
Godwin ID, Rutkoski J, Varshney RK, Hickey LT (2019) Technological perspectives for plant breeding. Theor Appl Genet 132(3), 555-557.
Harfouche AL, Jacobson DA, Kainer D, et al. (2019) Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol 37(11), 1217-1235.
Kwon MS, Lee, BT, Lee SY, Kim HU (2020) Modeling regulatory networks using machine learning for systems metabolic engineering. Curr Opin Plant Biol 65, 163-170.
Mohammadabadi M, Kheyrodin H, Afanasenko V, et al. (2024) The role of artificial intelligence in genomics. Agric Biotechnol J 16 (2), 195-279.
Mumtaj Begum H (2022) Scientometric analysis of the research paper output on artificial intelligence: A study. Indian J Inform Sources Serv 12(1), 52–58.
Muthamilarasan M, Singh NK, Prasad M (2019) Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: a climate change perspective. Adv Genet 103, 1-38.
Niazian M, Niedbała G (2020) Machine learning for plant breeding and biotechnology. Agriculture 10(10), e436.
Oliveira AL (2019). Biotechnology, big data and artificial intelligence. Biotechnology journal, 14(8), 1800613.
Parmley KA, Higgins RH, Ganapathysubramanian B, Sarkar S, et al. (2019) Machine learning approach for prescriptive plant breeding. Sci Rep 9(1), 17132. https://doi.org/10.1038/s41598-019-53451-4.
Peng H, Wang K, Chen Z, Cao Y, et al. (2020) MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice.  Nucleic Acids Res 48(D1), D1085-D1092.
Priya R, Ramesh D (2020) ML based sustainable precision agriculture: A future generation perspective. Sustain Comput Informatics Syst 28, e100439.
Pour Hamidi S, Mohammadabadi MR, Asadi Foozi M, Nezamabadi-pour H (2017) Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks. J Livestock Sci Technol 5 (2), 53-61.
Radhika A, Masood MS (2022) Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST technique. J Internet Serv Inf Secur 12(4), 177-196.
Raza A, Tabassum J, Kudapa H, Varshney RK (2021) Can omics deliver temperature resilient ready-to-grow crops?. Crit Rev Biotechnol 41(8), 1209-1232.
Razzaq A, Kaur P, Akhter N, et al. (2021) Next-generation breeding strategies for climate-ready crops. Front Plant Sci 12, e620420.
Razzaq A, Sadia B, Raza A, et al. (2019) Metabolomics: A way forward for crop improvement. Metabolites 9(12), e303.
Reinoso-Peláez EL, Gianola D, González-Recio O (2022) Genome-enabled prediction methods based on machine learning. Methods Mol Biol 2467, 189-218.
Resende RT, Piepho HP, Rosa GJ, Silva-Junior OB, et al. (2021) Enviromics in breeding: applications and perspectives on envirotypic-assisted selection. Theor Appl Genet 134,          95-112.
Schmidt J, Blessing F, Fimpler L, Wenzel F (2020) Nanopore sequencing in a clinical routine laboratory: challenges and opportunities. Clin Lab 66(6), e191114.
Shen Y, Zhou G, Liang C, Tian Z (2022) Omics-based interdisciplinarity is accelerating plant breeding. Curr Opin Plant Biol 66, e102167.
Stergiou C, Psannis KE (2017) Recent advances delivered by mobile cloud computing and internet of things for big data applications: a survey. Int J Netw Manag 27(3), e1930.
Surendar A, Saravanakumar V, Sindhu S, Arvinth N (2024) A Bibliometric study of publication- citations in a range of journal articles. Indian J Inform Source Serv 14(2), 97-103.
Syed A, Raza T, Bhatti TT, Eash NS (2022) Climate Impacts on the agricultural sector of Pakistan: Risks and solutions. Environ Chall 6, e100433.
Teshome DT, Zharare GE, Naidoo S (2020) The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Front Plant Sci 11, e601009.
Tong H, Nikoloski Z (2021) Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data. J Plant Physiol 257, e153354.
Uchida K, Sawada Y, Ochiai K, et al. (2020) Identification of a unique type of isoflavone O-methyltransferase, GmIOMT1, based on multi-omics analysis of soybean under biotic stress. Plant Cell Physiol  61(11), 1974-1985.
Van Dijk ADJ, Kootstra G, Kruijer W, De Ridder D (2021) Machine learning in plant science and plant breeding. Iscience 24(1), e101890.
Veerasamy K, Fredrik ET (2023) Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. J Internet Serv Inf Secur 13(3), 158-169.
Wang H, Cimen E, Singh N, Buckler E (2020) Deep learning for plant genomics and crop improvement. Curr Opin Plant Biol 54, 34-41.
Xu Y, Zhang X, Li H, Zheng H, et al. (2022) Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Mol Plant 15(11), 1664-1695.