کشاورزی هوشمند مبتنی بر شبکه حسگر بی سیم برای تشخیص پاتوژن های گیاهی با بیوتکنولوژی کشاورزی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم کامپیوتر و فناوری اطلاعات، دانشگاه کالینگا، رایپور، هند.

چکیده

هدف: کشاورزی هوشمند (SA) یک روش انقلابی برای کشاورزی است که با استفاده از فناوری‌های پیشرفته مانند حسگرها، ربات‌ها و تجزیه و تحلیل داده‌ها، بهره‌وری محصول را به حداکثر می‌رساند و آسیب‌های زیست‌محیطی را کاهش می‌دهد. با استفاده کمتر از آفت کش‌ها، کودها و سایر موادی که به اکوسیستم ها آسیب می رسانند، کشاورزی هوشمند به دنبال افزایش راندمان تولید و سازگاری بیشتر روش های کشاورزی با محیط زیست است. ترکیب شبکه‌های حسگر بی‌سیم (WSN) با فناوری‌های میکروسیال آزمایشگاهی روی یک تراشه برای نظارت و مدیریت بلادرنگ سلامت گیاه یکی از جدیدترین پیشرفت‌ها در SA است.
نتایج: بیوتکنولوژی کشاورزی (ABT) در ارتباط با آشکارسازهای میکروسیال شبکه‌ای ممکن است شناسایی و کنترل بیماری‌های گیاهی را بهبود بخشد. این حسگرهای زیستی می‌توانند حتی سطوح کمی از پاتوژن‌ها را در بافت‌های گیاهی یا نمونه‌های محیطی شناسایی کنند زیرا بسیار حساس، ارزان و قابل حمل هستند. روش‌های کشاورزی دقیق و تصویری کامل از انتشار بیماری با ادغام این حسگرهای زیستی در یک شبکه حسگر بی‌سیم (WSN) امکان‌پذیر می‌شود، که اجازه می‌دهد داده‌ها به صورت بی‌سیم به یک سرور مرکزی برای تجزیه و تحلیل بلادرنگ ارسال شوند.
نتیجه‌گیری: به منظور شناسایی بیماری‌های گیاهی، سیستم‌های کشاورزی سنتی اغلب به تکنیک‌های زمان‌بر از جمله بازرسی‌های بصری، نمونه‌برداری دستی و آزمایش‌های آزمایشگاهی تشخیصی وابسته هستند. بیوسنسورهای میکروسیال روشی سریعتر و دقیقتر برای تشخیص بیماری‌های گیاهی به صورت محلی و در زمان واقعی ارائه می‌دهند. این فناوری‌ها، هنگامی که با شبکه‌های حسگر بی‌سیم (WSN) ادغام می‌شوند، چارچوبی مؤثر برای پایش مداوم سلامت گیاه فراهم می‌کنند و به کشاورزان اجازه می‌دهند بیماری‌ها را زود تشخیص دهند و اقدامات فوری را انجام دهند. 

کلیدواژه‌ها


عنوان مقاله [English]

A wireless sensor network-based smart agriculture for the detection of plant pathogens with agricultural biotechnology

نویسندگان [English]

  • Priya Vij
  • Patil Manisha Prashant
Department of CS & IT, Kalinga University, Raipur, India.
چکیده [English]

Objective
Smart agriculture (SA) is a revolutionary method of farming that maximizes crop productivity and reduces environmental damage by using cutting-edge technology like sensors, robots, and data analytics. By using less pesticides, fertilizers, and other materials that damage ecosystems, it seeks to increase production efficiency and make agricultural methods more environmentally friendly. The combination of Wireless Sensor Networks (WSN) with microfluidic lab-on-a-chip technologies for real-time plant health monitoring and management is one of the most novel developments in SA.
 
Results
Agricultural biotechnology (ABT) in conjunction with networked microfluidic detectors may improve the identification and control of plant diseases. These biosensors can identify even minute levels of pathogens in plant tissues or environmental samples since they are designed to be very sensitive, inexpensive, and portable. Precision agricultural methods and a thorough image of disease propagation are made possible by the integration of these biosensors into a Wireless Sensor Network (WSN), which allows data to be wirelessly sent to a central server for real-time analysis.
 
 
 
Conclusions
In order to identify plant diseases, traditional agricultural systems often depend on time-consuming techniques including visual inspections, manual sampling, and diagnostic laboratory testing. Micro-fluidic biosensors provide a quicker and more accurate way to detect plant diseases locally and in real time. These technologies, when integrated with Wireless Sensor Networks (WSN), provide an effective framework for ongoing plant health monitoring, allowing farmers to identify diseases early and take prompt action.

کلیدواژه‌ها [English]

  • Agricultural Biotechnology
  • Plant Pathogens
  • Smart Agriculture
  • Wireless Sensor Networks
Adday GH, Subramaniam SK, Zukarnain ZA, Samian N (2022) Fault tolerance structures in wireless sensor networks (WSNs): Survey, classification, and future directions. Sensors 22(16), e6041.
Angin P, Anisi MH, Göksel F, et al. (2020) Agrilora: a digital twin framework for smart agriculture. J Wirel Mob Netw Ubiquitous Comput Dependable Appl 11(4), 77-96.
Arya N (2021) A review on effects of climate change on plant diseases. ACADEMICIA: Int. Multidiscip Res J 11(11), 896-902.
Barreto A, Paulus S, Varrelmann M, Mahlein AK (2020) Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: Comparison of input data and different machine learning algorithms. J Plant Dis Prot 127(4), 441-451.
Camgözlü Y, Kutlu Y (2023) Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat Engin Sci 8(3), 214-232.
Del Cerro J, Cruz Ulloa C, Barrientos A, de León Rivas J (2021) Unmanned aerial vehicles in agriculture: A survey. Agronomy 11(2), e203.
Dhanaraju M, Chenniappan P, Ramalingam K, et al. (2022) Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture 12(10), e1745.
Ghotbaldini H, Mohammadabadi MR, Nezamabadi-pour H, et al. (2019) Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed. Acta Scientiarum Anim Sci 41, e45282.
Jones RA (2021) Global plant virus disease pandemics and epidemics. Plants 10(2), e233.
Kozicka M, Gotor E, Ocimati W, et al. (2020). Responding to future regime shifts with agrobiodiversity: A multi-level perspective on small-scale farming in Uganda. Agric Syst 183, e102864.
Maharjan A, Gautam R, Jo J, et al. (2022) Comparison of overall immunity levels among workers at the grape orchard, rose greenhouse, and open-field onion farm. Safety and Health at Work 13(2), 248-254.
Mohammadabadi M, Kheyrodin H, Afanasenko V, et al. (2024) The role of artificial intelligence in genomics. Agric Biotechnol J 16 (2), 195-279.
Nabeesab Mamdapur GM, Hadimani MB, Sheik AK, Senel E (2019). The Journal of Horticultural Science and Biotechnology (2008-2017): A Scientometric Study. Indian J Inf Sources Serv 9(1), 76–84.
Nabi F, Jamwal S, Padmanbh K (2022) Wireless sensor network in precision farming for forecasting and monitoring of apple disease: a survey. Int J Inf Technol 14(2), 769-780.
Neupane K, Baysal-Gurel F (2021) Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review. Remote Sens 13(19), e3841.
Paymode AS, Malode VB (2022) Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG. Artif Intell Agric 6, 23-33.
Pour Hamidi S, Mohammadabadi MR, Asadi Foozi M, Nezamabadi-pour H (2017) Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks. J Livestock Sci Technol 5(2), 53-61.
Radhika A, Masood MS (2022) Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J Internet Serv Inf Secur 12(4), 177-196.
Singh BK, Delgado-Baquerizo M, Egidi E, et al. (2023) Climate change impacts plant pathogens, food security, and paths forward. Nat Rev Microbiol 21(10), 640-656.
Surendar A, Saravanakumar V, Sindhu S, Arvinth N (2024) A Bibliometric Study of Publication-Citations in a Range of Journal Articles. Indian J Inf Sources Serv 14(2), 97-103.
Wagg C, Hann S, Kupriyanovich Y, Li S (2021) Timing of short-period water stress determines potato plant growth, yield, and tuber quality. Agric. Water Manag 247, e106731.
Zoran G, Nemanja A, Srđan B (2022) Comparative Analysis of Old-Growth Stands Janj and Lom Using Vegetation Indices. Arch Tech Sci 2(27), 57-62.