کشف اولیه و طبقه بندی بیماری‌های گیاهی با شبکه‌های عصبی کانولوشنال و نانو حسگرهای زیستی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم کامپیوتر و فناوری اطلاعات، دانشگاه کالینگا، رایپور، هند.

چکیده

هدف: عفونت‌های ناشی از ویروس‌ها و باکتری‌ها، مشکلات اولیه مرتبط با میکروب هستند که به‌طور قابل‌توجهی بهره‌وری کشاورزی را در سراسر جهان کاهش می‌دهند. در حال حاضر، شناسایی عوامل بیماری زا به دلیل شرایط زندگی غالب دشوار است. حسگرهای زیستی امروزه به طور گسترده برای نظارت بر ذرات میکروبی و ویروسی استفاده می شوند.
مواد و روش‌ها: جلوگیری از هدررفت محصول و کاهش اثرات اقتصادی و زیست محیطی نیازمند شناسایی زودهنگام بیماری های گیاهی است. ردیابی نانوذرات آلودگی گیاهی، تشخیص زودهنگام بیماری را به دلیل نانوتکنولوژی و حسگرهای زیستی ممکن کرده است. پاتوژن‌ها از جمله باکتری‌ها، قارچ‌ها و ویروس‌ها نانوذراتی را با آثار شیمیایی منحصربه‌فرد تشکیل می‌دهند که ممکن است توسط نانو حسگرهای زیستی حساس شناسایی شوند. کشاورزی دقیق اکنون پاسخ های سریع تر و کنترل بیماری های خاص تر را امکان پذیر می‌کند. روش‌های یادگیری عمیق (DL)، به‌ویژه شبکه‌های عصبی کانولوشن (CNN)، می‌توانند الگوهای سلسله مراتبی را در داده‌های نانو حسگر زیستی بیاموزند و گیاهان سالم و آلوده را به‌طور دقیق تشخیص دهند، حتی در مراحل اولیه آلودگی. این امر کشاورزی دقیق و مدیریت بیماری را گسترش می‌دهد.
 
نتایج: این مطالعه از مدل ECPD-CNN-NBS برای شناسایی بیماری لکه‌های باکتریایی (BS) در گیاهان هلو با تجزیه و تحلیل تصاویر برگ آنها استفاده می‌کند. این مدل همچنین می‌تواند برای تشخیص ECPD استفاده شود. آزمایش‌های انجام‌شده در این مقاله از مجموعه داده‌های قابل دسترسی عمومی PlantVillage برای به دست آوردن تصاویر برگ گیاهان هلو استفاده می‌کنند.
نتیجه‌گیری: سیستم پیشنهادی با استفاده از 10013 پارامتر یادگیری به دقت یادگیری 99.55 درصد و دقت تست 99.01 درصد می‌رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Early discovery and classification of plant diseases with convolutional neural networks and nano biosensors

نویسندگان [English]

  • F Rahman
  • Lalnunthari Lalnunthari
Department of CS & IT, Kalinga University, Raipur, India.
چکیده [English]

Objective
Infections caused by viruses and bacteria are the primary microbe-related problems that significantly decrease agricultural productivity worldwide. Currently, the identification of pathogens is particularly difficult due to the prevailing living conditions. Biosensors are now widely used for the surveillance of microbial and viral particles.
 
Materials and Methods
Preventing crop loss and reducing economic and environmental effects requires early plant disease identification. Tracking plant infection nanoparticles has made early disease diagnosis possible due to nanotechnology and biosensors. Pathogens including bacteria, fungi, and viruses form nanoparticles with unique chemical traces that may be detected by sensitive nano biosensors. Precision agriculture now allows faster responses and more specific disease control. Deep Learning (DL) methods, particularly Convolutional Neural Networks (CNNs), can learn hierarchical patterns in nano biosensor data and accurately distinguish healthy and infected plants, even in early infection stages. This expands precision agriculture and disease management.
 
Results
The study utilizes the ECPD-CNN-NBS model to identify Bacterial Spot (BS) disease in peach plants by analyzing their leaf images. The model can also be employed for ECPD detection. The experiments conducted in this paper utilize the publicly accessible PlantVillage dataset to obtain leaf pictures of peach plants.
 
Conclusions
The proposed system attains a learning accuracy of 99.55% and a testing accuracy of 99.01% by utilizing 10,013 learning parameters.

کلیدواژه‌ها [English]

  • Nano Biosensors
  • leaf images
  • microbe-related problems
  • Bacterial Spot
  • pathogens
Camgözlü Y, Kutlu Y (2023) Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat Eng Sci 8(3), 214-232.
Dessy A, Ratna D, Leni S, et al. (2023) Using Distance Measure to Perform Optimal Mapping with the K-Medoids Method on Medicinal Plants, Aromatics, and Spices Export. J Wirel Mob Netw Ubiquitous Comput Dependable Appl 14(3), 103-111.
Ferentinos KP (2018) Deep learning models for plant disease detection and diagnosis. Comput Electron Agric 145, 311-318.
Fu L, Wang Z, Dhankher OP, Xing B (2020) Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J Exp Bot 71(2), 507-519.
Ghotbaldini H, Mohammadabadi M, Nezamabadi-pour H, et al. (2019) Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed. Acta Sci - Anim Sci 41, e45282.
Iqbal Z, Khan MA, Sharif M, et al. (2018) An automated detection and classification of citrus plant diseases using image processing techniques: A review. Comput Electron Agric 153, 12-32.
Kumar V, Arora K (2020) Trends in nano-inspired biosensors for plants. Mater Sci Energy Technol 3, 255-273.
Kuska MT, Heim RH, Geedicke I, et al. (2022) Digital plant pathology: A foundation and guide to modern agriculture. J Plant Dis Prot 129(3), 457-468.
Lamichhane JR, You MP, Laudinot V, et al. (2020) Revisiting sustainability of fungicide seed treatments for field crops. Plant Dis 104(3), 610-623.
Lee SH, Goëau H, Bonnet P, Joly A (2020) New perspectives on plant disease characterization based on deep learning. Comput Electron Agric 170, e105220.
Mitra D (2021) Emerging plant diseases: research status and challenges. In book: Emerging Trends in Plant Pathology. Pp. 1-17.
Mohammadabadi M, Kheyrodin H, Afanasenko V, et al. (2024) The role of artificial intelligence in genomics. Agric Biotechnol J 16 (2), 195-279.
Negi P, Anand S (2024) Plant disease detection, diagnosis, and management: recent advances and future perspectives. Art Inte Sma Agri Tech Appl 413-436.
Oliveira Jr ON, Iost RM, Siqueira Jr JR, et al. (2014) Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6(17), 14745-14766.
Ons L, Bylemans D, Thevissen K, Cammue BP (2020) Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganism 8(12), e1930.
Pour Hamidi S, Mohammadabadi MR, Asadi Foozi M, Nezamabadi-pour H (2017) Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks. J Livestock Sci Technol 5 (2), 53-61.
Radhika A, Masood MS (2022) Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J Internet Serv Inf Secur 12(4), 177-196.
Rahmani MKI, Ghanimi HM, Jilani SF, et al. (2023) Early pathogen prediction in crops using nano biosensors and neural network-based feature extraction and classification. Big Data Res 34, e100412.
Srinivasa RM, Praveen Kumar S, Srinivasa RK (2023) Classification of Medical Plants Based on Hybridization of Machine Learning Algorithms. Indian J Inf Sources Serv 13(2), 14-21.
Surendar A, Saravanakumar V, Sindhu S, Arvinth N (2024) A Bibliometric Study of Publication-Citations in a Range of Journal Articles. Indian J Inf Sources Serv 14(2), 97-103.
Tayebeh F, Nazarian S, Mirhosseini SA, Amani J (2017) Novel PCR-ELISA technique as a good substitute in molecular assay. J Appl Biotechnol Rep 4(2), 567-572.
Xu Y, Hassan MM, Sharma AS, et al. (2023) Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Crit Rev Food Sci Nutr 63(4), 486-504.
Yang Z, Tian J, Feng K, et al. (2021) Application of a hyperspectral imaging system to quantify leaf-scale chlorophyll, nitrogen and chlorophyll fluorescence parameters in grapevine. Plant Physiol Biochem 166, 723-737.
Zoran G, Nemanja A, Srđan B (2022) comparative analysis of old-growth stands janj and lom using vegetation indices. Arch Tech Sci 2(27), 57-62.