بررسی‌ شناسایی مسیرها و lncهای دخیل در گل‌دهی نخل خرما با استفاده از تکنیک RNA-Seq

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اصلاح نباتات و بیوتکنولوژی،دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی ،دانشگاه زابل، زابل، ایران

3 گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منایع طبیعی گرگان، گرگان، ایران

4 کارشناس بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی هرمزگان، سازمان تحقیقات، آموزش و ترویج

5 محقق پست دکتری، گروه بیوتکنولوژی، موسسه تحقیقاتی آیپک آلمان، آلمان

10.22103/jab.2024.23423.1568

چکیده

چکیده:
هدف: نخل خرما با نام علمی (Phoenix dactylifera L) گیاهی تک‌لپه‌ و سازگار به نواحی گرمسیری و نیمه‌گرمسیری می‌باشد. رشد گل یکی از مراحل اصلی در ظهور ارگان متمرکز به تولیدمثل جنسی در گیاهان گل‌دار بوده و فرایندهای گلدهی توسط مجموعه‌ای بسیار پیچیده از مسیرهای کنترل شده توسط ژن‌های هویت مریستم گل، چرخه گل، هویت اندام گل و برخی lncRNAها حفاظت شده تکاملی تنظیم می‌شود. مطالعات مختلف روی موجودات به طور مداوم بیان بالایی از lncRNAها را در اندام‌های تولیدمثلی نشان می‌دهد.
مواد و روش‌ها‌: به‌منظور دستیابی به شناسایی مسیرها و lncهای دخیل در گل‌دهی نخل خرما با استفاده از تکنیک RNA-Seq، نمونه‌های‌ جوانه گل از نخل‌های خرمای ایستگاه‌ تحقیقاتی میناب (استان هرمزگان) جمع‌آوری و به پژوهشکده زیست‌فناوری کشاورزی طبرستان منتقل شدند. RNAی کل از نمونه‌های جمع‌آوری‌شده از جوانه‌ گل‌ ارقام مختلف نر و ماده استخراج و به نسبت مساوی با یکدیگر مخلوط شده و در انتها، دو تکرار از هر نمونه‌ ادغام شده به دست آمد و برای توالی یابی ارسال شد. پس از دریافت نتایج توالی‌یابی آنالیزهای موردنیاز با استفاده از نرم‌افزارهای مناسب انجام شد.
نتایج: نتایج تحقیق حاضر نشان داد که lncRNAهای زیادی در مسیرهای گل‌دهی نخل خرما در سه مسیر تناوب نوری (سیزده مورد)، خودانگیزی (یک مورد) و مسیر جیبرلین (چهار مورد) نقش داشتند درحالی‌که در مسیر بهاره‌سازی هیچ lncRNA شناسایی نشد. در ادامه lncRNAهای شناسایی شده بر اساس توالی با lncRNAهای گزارش شده در سایر گیاهان مورد مقایسه قرار گرفتند که نتایج نشان داد که lncRNA شناسایی شده مرتبط با مسیر تناوب نوری، با موارد گزارش شده در گیاهانی چون نخل روغنی، شبدر قرمز، زیتون و گندم مشابه بودند و افزایش بیان آن منجر به گل‌دهی سریع و مستقل از تناوب نوری در گیاهان می‌شود. یک lncRNA شناسایی شده مرتبط با مسیر جیبرلین، با lncRNA گزارش شده در پنبه که مرتبط با ژن LFY بود، مشابهت داشت. چهار lncRNA شناسایی شده مرتبط با مسیر خودانگیزی، با lncRNAهای موجود در سیب، ارزن و نخودفرنگی مشابه بود و با ژن FCA دخیل در مسیر خودانگیزی مرتبط بود.
نتیجه‎گیری: فرایند گل‌دهی در گیاهان تنها در فصل‌های معینی از سال، به‌واسطه شبکه‌های تنظیمی حاصل از سیگنال‌های محیطی و منتج از فرایند ژن‌های دخیل در چهار مسیر تنظیمی گل‌دهی، شامل تناوب نوری، بهاره‌سازی، خودانگیزی و جیبرلین صورت می‌گیرد. شناسایی و مقایسهlncRNAهای دخیل در مسیرهای مختلف گل‌دهی و شناسایی ژن‌های مرتبط با آنها زمینه را برای انجام تحقیقات آتی کاربردی در این گیاه ارزشمند فراهم می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of pathways and lncRNAs involved in date palm flowering using RNA-Seq technique

نویسندگان [English]

  • Shahin Madadi 1
  • Salehe Ganjali 2
  • Leila Fahmideh 3
  • Hamed Hasanzadeh Khankahdani 4
  • Hadis Kord 5
  • Reza Haghi Dareh Deh 5
1 Ph. D. student of Biotechnology, Department of Plant Breeding and Biotechnology, University of Zabol, Zabol, Iran
2 Assistant Professor Department of Plant Breeding and Biotechnology, University of Zabol, Zabol, Iran
3 Associate Professor of the Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Horticultural Crops Research Department, Hormozgan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran.
5 Post-Doctoral Research, Department IPK Gatersleben Gemany
چکیده [English]

Objective
The date palm, known scientifically as Phoenix dactylifera L, grows well in tropical and subtropical regions. The process of flower development initiates sexual reproduction in plants. Specific genes regulate this process in the floral meristem, cycle, organ identity, and certain lncRNAs. Studies on animals have shown that lncRNAs are notably active in reproductive organs.
Materials and methods
We aimed to explore the pathways and lncRNAs involved in date palm flowering. Minab date palm flower bud samples were collected from the Tropical Fruit Research Station in Hormozgan Province, Iran. The samples were then transferred to the Tabaristan Agricultural Biotechnology Research Institute for analysis. RNA was extracted from various cultivars' male and female flower buds and combined equally. Two replicates were produced for each mixed sample. Subsequently, it was sent for sequencing.
Results
We scrutinized the sequencing outcomes to delve into the mechanisms of plant flowering which is dependent on seasonal cues and is influenced by environmental factors and specific genes. Our research focused on four key pathways: photoperiod, vernalization, self-stimulation, and gibberellin. Our investigation uncovered long non-coding RNAs (lncRNAs) associated with date palm flowering. We identified 13 lncRNAs in the photoperiod pathway, one in the self-stimulation, and four in the gibberellin pathway. Interestingly, no lncRNAs were detected in the vernalization pathway. We proceeded to compare these lncRNAs with those found in other plant species. The lncRNAs in the photoperiod pathway resembled those in oil palm, red clover, olive, and wheat. Their increased expression leads to accelerated flowering, irrespective of photoperiod. Moreover, we pinpointed a lncRNA in the gibberellin pathway that is similar to the one found in cotton which is linked to the LFY gene. Furthermore, our study revealed four lncRNAs in the self-stimulation pathway, resembling lncRNAs in apple, millet, and pea, all of which are associated with the FCA gene.
Conclusions
The flowering process in plants occurs only in certain seasons of the year, through regulatory networks resulting from environmental signals and involving the genes associated with the four regulatory pathways of flowering: photoperiod, vernalization, self-stimulation, and gibberellin. The identification and comparison of lncRNAs involved in different flowering pathways, along with the identification of related genes, provide the basis for future applied research in this valuable plant.

کلیدواژه‌ها [English]

  • long non-coding RNAs
  • next generation sequencing
  • gibberellin pathway
جاودان اصل مریم، رجبی معماری حمید، نباتی احمدی داریوش، رهنما افراسیاب (1395) مقایسه روش‌های مختلف استخراج RNA ژنومی از گیاه دارویی بومادران (Achillea millefolium). مجله تولیدات گیاهی 39 (2) ، 114-105.
جعفری احمدآبادی سید علی اصغر، عسکریهمت حشمتاله، محمدآبادی محمدرضا (1402) تاثیر شاهدانه بر بیان ژن DLK1 در بافت‌ قلب بره‌های کرمانی. مجله بیوتکنولوژی کشاورزی 15(1) ، 234-217.
روح الامین سپیده، زاهدی بهمن، نظریان-فیروزآبادی فرهاد، ساعی علی (1394) تجزیه و تحلیل بیان ژن‌های تنظیم کننده کلیدی بیوسنتز آنتوسیانین در انار. مجله علوم باغبانی 186 ،86-84
شکری سمیرا، خضری امین، محمدآبادی محمدرضا، خیرالدین حمید (1402) بررسی بیان ژنMYH7  در بافت‌های ران، دست و راسته بره‌های پرواری نژاد کرمانی. مجله بیوتکنولوژی کشاورزی 15(2) ، 236-217.
شجاعی سیدحبیب، مصطفوی خداداد، بی‌همتا محمدرضا و همکاران (1400) پایداری در هیبریدهای ذرت بر اساس تکنیک گرافیکی بای پلات .GGE مجله زراعت 12(2) ، 394.
محمدآبادی محمدرضا، گلکار افروز، عسکری حصنی مجید (1402) اثر رازیانه (Foeniculum vulgare) بر بیان ژن فاکتور 1 رشد شبه انسولین در بافت شکمبه گوسفند کرمانی. مجله بیوتکنولوژی کشاورزی 15(4) ،256-239.
 
References
Adawy SS, Hussein HAE, Ismail E S EL-Itiby H A, et al. (2004) Genotyping Egyptian Date palm cultivars using RAPD, ISSR, and AFLP markers and estimation of genetic stability among tissue culture-derived plants. Arab J Biotechnol 8(1), 99-114.
Abou-Elwafa SF, Büttner, B, Chia T, et al. (2011) Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. J Exp Bot 62(10), 3359-3374.
Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61, 1001–1013.
Azadi Ahmadabadi G (2023) Examining the effects of various scientific collaborations on the quality of Iranian scientific publications in biotechnology. Cas J Sci 10(2), 65-76 (In Persian).
Barazandeh A, Mohammadabadi MR, Ghaderi-Zefrehei M, Nezamabadipour H (2016) Predicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm. Iran J Appl Anim Sci 6 (3), 571-579.
Bordbar F, Mohammadabadi M, Jensen J, et al. (2022) Identification of candidate genes regulating carcass depth and hind leg circumference in Simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing. J Anim Sci 12 (9), e1103.
Blazquez MA,Weigel D (2000) I of floral inductive signals in Arabidopsis. J Nat 404, 889-892.
Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: A review. Crit. Rev. Environ Sci Technol 47(19), 1836-1876.
Bäurle I, Smith L, Baulcombe DC, Dean C (2007) The widespread role of the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318(5847), 109-112.
Channuntapipat C, Sedgley M, Collins G (2001) Sequences of the cDNAs and genomic DNAs encoding the S1, S7, S8, and Sf alleles from almond, Prunus dulcis. Thero Appl Genet 103, 1115-22.
Cheng JZ, Zhou YP, Lv TX, et al. (2017) Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol Mol Biol Plants 23, 477-485.
Chen N, Zhou M, Dong X, et al. (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, UK, 507-513.
Corbesier L, Vincent C, Jang S, et al. (2007) FT protein movement contributes to long-distance signaling in the floral induction of Arabidopsis. Science 316(5827), 1030-1033.
Ding J, Shen J, Mao H, et al. (2012) RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. Mol Plant 5, 1210–1216.
Fang J, Zhang F, Wang H, et al. (2019) Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci U S A 116, 18717–18722.
Golicz AA, Bayer PE, Barker GC, et al. (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7(1), e13390.
Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O, et al. (2008) An improved method for the isolation of total RNA from Avicennia germinans leaves. Z Naturforsch 63(1-2), 124-126.
‏ Glazińska P, Zienkiewicz A, Wojciechowski W, Kopcewicz J (2009) The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. J Plant Physiol 166(16), 1801-1813.
Gorshkova T, Chernova T, Mokshina N, et al. (2018) Transcriptome analysis of intrusively growing flax fibers isolated by laser microdissection. Sci Rep 8(1), e14570.
Han J, Jentzen A, Weinan E (2018) Solving high-dimensional partial differential equations using deep learning. Proc Nat Acad Sci 115(34), 8505-8510.
Hirsch CR, Clark DM, Mathews A (2006) Imagery and interpretations in social phobia: Support for the combined cognitive biases hypothesis. Behav Ther 37(3), 223-236. ‏
Hu J, Jin Q, Ma Y (2020) AfLFY, a LEAFY homolog in Argyranthemum frutescens, controls flowering time and leaf development. Sci Rep 10(1), 1-11. ‏
Irish V F (2010) The flowering of Arabidopsis flower development. Plant J 611014, e1028.
Inigo S, Alvarez MJ, Strasser B, et al. (2012) PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J 69, 601-612.
Immink RG, Posé D, Ferrario S, et al. (2012) Characterization of SOC1’s central role in flowering by the identification of its upstream and downstream regulators. Plant Physio 160(1), 433-449. ‏
Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13, 83-89.
 Jafari Ahmadabadi SAA, Askari-Hemmat H, Mohammadabadi M, et al. (2023) The effect of Cannabis seed on DLK1 gene expression in heart tissue of Kermani lambs. Agric Biotechnol J 15 (1), 217-234 (In Persian).
Jung JH, Seo PJ, Park CM (2009) MicroRNA biogenesis and function in higher plants. Plant Biotechnol Rep 3, 111-126.
Javdan Asl M, Rajabi Memari H, Nabati Ahmadi D , Rahnama A (2016) Comparison of Different Genomic RNAs Extraction Methods From the Medicinal Plant Yarrow (Achillea millefolium L.). Plant Prod 39(2), 105-114 (In Persian).
Jiao K, Li X, Guo W, et al. (2017) High-Throughput RNA-Seq data analysis of the single nucleotide polymorphisms (SNPs) and Zygomorphic Flower Development in Pea (Pisum sativum L.) Int J Mol Sci 18(12), e2710.
Krizek BA (1999) Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet 25(3), 224-236.
Kim SM, Kang SW, Kwon ON, et al. (2012) Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. J Korean Soc Appl Biol Chem 55, 477-483.
Kim DH, Xi Y, Sung S (2017) Modular function of long noncoding RNA, COLDAIR, in the vernalization response. Plant Genet 13, 1–18.
 Kovi MR, Amdahl H, Alsheikh M, et al. (2017) De novo and reference transcriptome assembly of transcripts expressed during flowering provide insight into seed setting in tetraploid red clover. Sci Rep 7(1), e44383.
Kircher M, Xiong C, Martin B, et al. (2019) Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. Nat Com 10(1), e3583.
Kim S (2001). International transmission of US monetary policy shocks: Evidence from VAR's. J Monet Econ 48(2), 339-372.
Koornneef M, Hanhart C, Van der Veen J (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229, 57-66.
Kumar G, Arya P, Gupta K, et al. (2016) Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malus x domestica). Sci Rep 6(1), e20695.
Li L, Eichten SR, Shimizu R, et al. (2016) Genome-wide discovery and characterization of maize long non-coding RNAs. Genet Biol 15, 1-15.
Li R, Fu D, Zhu B, et al. (2018) CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J 94 513–524.
Li F, Melkonian M, Rothfels CJ, et al. (2015) Phytochrome diversity in green plants and the origin of standard plant phytochromes. Nat Com 6(1), e7852.
Li Y, Wang N, Liu J, et al. (2017) Demystifying neural style transfer. arXiv preprint arXiv:1701.01036.
Li C, Yang Y, Ren L, et al.  (2020) Genetic evolution analysis of 2019 novel coronavirus and coronavirus from other species. Infection, Genet Evol 82, e104285.
Li F W, Melkonian M, Rothfels C J, et al.  (2017) Phytochrome diversity in green plants and the origin of standard plant phytochromes. Nat Comun 6(1), e7852.
Luo X, He Y (2020) Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. J Integr Plant Biol 62(1), 104-117. ‏
Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61, 2247-2254.
Liu H, Wang R, Mao B, et al. (2019) Identification of lncRNAs involved in rice ovule development and female gametophyte abortion by genome-wide screening and functional analysis. BMC Genet 20, 1-16.
 ‏Mohammadabadi M, Golkar A, Askari Hesni M (2023) The effect of fennel (Foeniculum vulgare) on insulin-like growth factor 1 gene expression in the rumen tissue of Kermani sheep. Agric Biotechnol J 15 (4), 239-256 (In Persian).
Mohamadipoor L, Mohammadabadi M, Amiri Z, et al. (2021) Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet Res 17 (1), 1-9.
Mohammadinejad F, Mohammadabadi M, Roudbari Z, et al. (2022) Identification of Key Genes and Biological Pathways Associated with Skeletal Muscle Maturation and Hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals 12 (24), e3471.
Mockler T, Yang H, Yu X, et al. (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci U S A 100(4), 2140-2145.
Masoudzadeh N, Östensson M, Persson J, et al. (2020) Molecular signatures of anthroponotic cutaneous leishmaniasis in the lesions of patients infected with Leishmania tropica. Sci Rep 10(1), E16198.
Melzer S, Müller AE, Jung C (2014) Genetics and Genomics of Flowering Time Regulation in Sugar Beet. Genomics of Plant Genetic UK. 3-26.
Nag A, Jack T (2010) Chapter twelve—sculpting the flower; the role of microRNAs in flower development. Curr Top Dev Biol 91 349–378.
Nejat N, Mantri N (2018) Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses Crit Rev Biotechnol 38(1), 93-105.
Ogiso E, Takahashi Y, Sasaki T, et al. (2010) The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol 152(2), 808-820.
Ogiso E, Matsubara K, Yamamoto S, et al. (2013) Natural variation of the rice flowering locus T 1 contributes to flowering time divergence in rice. Plos One 8(10), e75959.
Ooi S E, Sarpan N, Abdul Aziz N, et al. (2019) Differential expression of heat shock and floral regulatory genes in pseudocarpel initials of mantled female inflorescences from Elaeis guineensis Jacq. Plant Rep 32, 167-179.
Perry KI, Herms DA (2016) Response of the forest floor invertebrate community to canopy gap formation caused by early stages of emerald ash borer-induced ash mortality. Ecol Manag 375, 259-267.
Pezhman H (2002) A view on date palm situation and its research program in Iran. Proceeding of Date Palm Global Network Establishment Meeting, UAE University, Al Ain. 71-80. 
Posé S, Kirby AR, Mercado JA, et al. (2012) Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydr Polym 88(3), 882-890.
Pearce S, Tabbita F, Cantu D, et al. (2014) "Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biology 14, 1-23.
Rinn J L, Chang H Y (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81, 145-166.
Rowley CW, Dawson ST (2017) Model reduction for flow analysis and control. Annu Rev Fluid Mech 49, 387-417.
Rouholamin S, Zahedi B, Nazarian-Firouzabadi F, Saei A (2015) Expression analysis of anthocyanin biosynthesis key regulatory genes involved in pomegranate (Punica granatum L). Sci Hortic 186, 84-88 (In Persian).
Ramírez-Tejero JA, Jiménez-Ruiz J, Leyva-Pérez M, et al. (2020) Gene expression pattern in olive tree organs (Olea europaea L). Genet 11(5), e544.
Rambani A, Page JT, Udall JA (2014) Polyploidy and the petal transcriptome of Gossypium. BMC Plant Biol 14, 1-14.
Safaei SMH, Dadpasand M, Mohammadabadi M, et al. (2022) An Origanum majorana Leaf Diet Influences Myogenin Gene Expression, Performance, and Carcass Characteristics in Lambs. Animals 13 (1), e14.
Shahsavari M, Mohammadabadi M, Khezri A, et al. (2022) Effect of Fennel (Foeniculum Vulgare) Seed Powder Consumption on Insulin-like Growth Factor 1 Gene Expression in the Liver Tissue of Growing Lambs. Gene Expr 21 (2), 21-26.
Shojaei SH, Mostafavi K, Bihamta MR, et al. (2022) Stability on maize hybrids based on GGE biplot graphical technique. Agron 12(2), e394 (In Persian).
Shokri S, Khezri A, Mohammadabadi M, Kheyrodin H (2023) The expression of MYH7 gene in femur, humeral muscle and back muscle tissues of fattening lambs of the Kermani breed. J Agric Biotechnol 15 (2), 217-236 (In Persian).
Sun K, Tordjman J, Clément K, Scherer PE (2013) Fibrosis and adipose tissue dysfunction. Cell Metab 18(4), 470-477.
Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68(12), 2013-2037.
Song X, Sun L, Luo H, et al. (2016) Genome-wide identification and characterization of long non-coding RNAs from mulberry (Morus notabilis) RNA-seq data. Genetics 7(3), e11.
Schwab R, Palatnik JF, Riester M, et al. (2005) Specific effects of microRNAs on the plant transcriptome. Dev cell 8(4), 517-527.
Shin WJ, Nam AH, Kim JY, et al. (2022) Intronic long noncoding RNA, RICE FLOWERING ASSOCIATED (RIFLA), regulates OsMADS56-mediated flowering in rice. Plant Sci 320, e111278.
Shibaya T, Hori K, Ogiso-Tanaka E, et al. (2016) Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in rice. Plant Cell Physiol 57(9), 1828-1838.  
Sheerin DJ, Hiltbrunner A (2017) Molecular mechanisms and ecological function of far‐red light signaling. Plant Cell Environ 40(11), 2509-2529.
Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59, 573-594. ‏
Torres MF, Mathew LS, Ahmed I, et al. (2018) Genus-wide sequencing supports a two-locus model for sex determination in Phoenix. Nat Com 9(1), e3969.
Wu X, Zhu X (2013) Data mining with big data. IEEE transactions on knowledge and data engineering, UK, 97-107.
Wu W1, Zheng XM, Chena D, et al. (2017) OsCOL16, encoding a CONSTANS-like protein, represses flowering by up-regulating Ghd7 expression in rice. Plant Sci 260, 60-69.
‏ Walbot V, Evans MM (2003) Unique features of the plant life cycle and their consequences. Nat Rev Genet 4(5), 369-379.
Wang J, Meng X, Dobrovolskaya OB, et al. (2017) Non-coding RNAs and their roles in stress response in plants. Genom Proteom Bioinform 15, 301–312.
Wang Y, Luo X, Sun F, et al (2020) Overexpressing lncRNA LAIR increases grain yield and regulates neighboring gene cluster expression in rice. Nat Com 9, 1–9.
Wang Y, Luo X, Sun F, et al (2018) Overexpressing lncRNA LAIR increases grain yield and regulates neighboring gene cluster expression in rice. Nat Com 9, 1–9.
Yamaguchi N (2021) LEAFY, a pioneer transcription factor in plants: A mini-review. Front Plant Sci 12, e701406.
Yokoo A, Suzuki YJ, Iguchi M, et al (2014) Dual infrasound sources from a vulcanian eruption of Sakurajima volcano inferred from cross‐array observation. Seismol Res Lett 85(6), 1212-1222.
Zhang P, Du H, Wang J, et al. (2019) Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J 87, 1384-1395.
Zhu C, Yang J, Box MS, et al. (2018) A dynamic co-expression map of early inflorescence development in Setaria viridis provides a resource for gene discovery and comparative genomics. Front Plant Sci 9, e1309.
Zhu Z, Woodcock CE, Holden C, et al. (2015) Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ 162, 67-83.