ادغام اینترنت اشیا و بیوتکنولوژی برای نظارت و مدیریت در زمان واقعی محصول در کشاورزی هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم کامپیوتر و فناوری اطلاعات، دانشگاه کالینگا، رایپور، هند.

10.22103/jab.2025.24001.1609

چکیده

هدف: مشکلات مدرن از جمله افزایش تقاضای غذا، منابع محدود، و تخریب محیط زیست را می‌توان به طور موثر از طریق عمل انقلابی کشاورزی هوشمند (SA) حل کرد. پاسخگویی به تقاضای جهانی و در عین حال کاهش اثرات زیست محیطی چالشی برای شیوه‌های کشاورزی سنتی است. ترکیب بیوتکنولوژی (BT) با SA یک راه حل انقلابی با تقویت روش‌های کشاورزی، افزایش بازده محصول و کاهش مصرف منابع ارائه می‌کند.
مواد و روش‌ها: ادغام سیستم‌های کشاورزی هوشمند از تجزیه و تحلیل داده‌ها و شبکه‌های عصبی عمیق (DNN) پتانسیل بهینه‌سازی کشاورزی را حتی بیشتر افزایش داده است. به منظور بهبود مدیریت محصول، کاهش ضایعات و افزایش تولید کلی مزرعه، کشاورزان می‌توانند از تصمیمات مبتنی بر داده استفاده کنند که توسط الگوریتم های DNN ممکن شده است تا بینش عملی در مورد سلامت محصول، روند رشد و شیوه‌های کشاورزی ایده آل به دست آورند.

نتایج: یک سیستم نظارت و مدیریت محصول در زمان واقعی (R-CMM) که DNN، اینترنت اشیا (IoT) و بیوتکنولوژی (BT) را یکپارچه می‌کند در این تحقیق به عنوان یک کاربرد کشاورزی هوشمند پیشنهاد شده است. IoBT با جمع‌آوری سیگنال‌های بیولوژیکی از محیط با استفاده از حسگرهای کوچک، تجدیدپذیر و غیر تهاجمی، داده‌های بلادرنگ را در مورد سلامت گیاه، شرایط خاک و پارامترهای آب و هوایی ارائه می‌کند. با این کار، مدیریت خودکار سیستم‌های محصول و نظارت مستمر از راه دور هر دو امکان پذیر می‌شود و هزینه‌های پرسنل را کاهش و کارایی کلی را افزایش می‌دهد.
نتیجه‌گیری: مدیریت مزارع داخلی به تعدادی از ویژگی‌های حیاتی، از جمله دما، رطوبت، رطوبت خاک و شدت نور متکی است که سیستم R-CMM از همه آنها برای حفظ کنترل استفاده می‌کند. استفاده از الگوریتم‌های DNN در این پلتفرم با پیش‌بینی زمان استرس، بهینه‌سازی تخصیص منابع و شناسایی نشانه‌های اولیه بیماری یا هجوم آفات، کشاورزی مؤثرتر و دقیق‌تر را امکان‌پذیر می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Integration of IoT and biotechnology for real-time crop monitoring and management in smart agriculture

نویسندگان [English]

  • Aakansha Soy
  • Sutar Manisha Balkrishna
Department of CS & IT, Kalinga University, Raipur, India.
چکیده [English]

Abstract
Objective
Modern problems including rising food demand, limited resources, and environmental degradation can be effectively addressed through the revolutionary practice of smart agriculture (SA). Meeting global demand while reducing environmental effect is a challenge for traditional farming practices. By enhancing agricultural methods, increasing crop yields, and decreasing resource consumption, the combination of Biotechnology (BT) with SA provides a revolutionary solution.

Material and methods
Smart Agriculture systems' incorporation of data analytics and Deep Neural Networks (DNN) has increased the optimization potential of agriculture even further. In order to improve crop management, decrease waste, and increase overall farm production, farmers can use data-informed decisions made possible by DNN algorithms to get practical insights into crop health, growth trends, and ideal farming practices.

Results
A Real-Time Crop Monitoring and Management (R-CMM) system integrating DNN, Internet of Things (IoT), and Biotechnology (BT) is proposed in this research as an application of Smart Agriculture. By collecting biological signals from the environment using tiny, renewable, and non-invasive sensors, IoBT provides real-time data on plant health, soil conditions, and climate parameters. With this, automated administration of crop systems and continuous monitoring from a distance are both made possible, cutting down on personnel expenses and increasing overall efficiency.

Conclusions
Indoor crop plantation management relies on a number of critical characteristics, including temperature, humidity, soil moisture, and light intensity, all of which the R-CMM system uses to keep checks on. The platform’s use of DNN algorithms allows for more effective and accurate farming by predicting when crops may experience stress, optimizing the allocation of resources, and detecting early indications of disease or pest infestations.

کلیدواژه‌ها [English]

  • Biotechnology
  • deep neural networks
  • internet of bio things
  • sensors
  • smart agriculture
Angin P, Anisi MH, Göksel F, et al. (2020) Agrilora: a digital twin framework for smart agriculture. J Wirel Mob Netw Ubiquitous Comput Dependable Appl 11(4), 77-96.
Azadi H, Moghaddam SM, Burkart S, et al. (2021) Rethinking resilient agriculture: From climate-smart agriculture to vulnerable-smart agriculture. J Clean Prod 319, e128602.
Bronson K (2019) Looking through a responsible innovation lens at uneven engagements with digital farming. NJAS Wageningen J Life Sci 90, e100294.
Camgözlü Y, Kutlu Y (2023) Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat Eng Sci 8(3), 214-232.
Ge J, Zhao L, Gong X, et al. (2021) Combined effects of ventilation and irrigation on temperature, humidity, tomato yield, and quality in the greenhouse. Hort Sci 56(9), 1080-1088.
Ghotbaldini H, Mohammadabadi M, Nezamabadi-pour H, et al. (2019) Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed. Acta Sci Anim Sci 41, e45282.
Hamidi SP, Mohammadabadi MR, Foozi MA, Nezamabadi-Pour H (2017) Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks. J Livestock Sci Technol 5(2), 53-61.
Karunathilake EMBM, Le AT, Heo S, et al. (2023) The path to smart farming: Innovations and opportunities in precision agriculture. Agric 13(8), e1593.
Lopes MA (2023) Rethinking plant breeding and seed systems in the era of exponential changes. Ciênc agrotec 47, e0001R23. https://doi.org/10.1590/1413-70542023470001R23
Mohammadabadi M, Kheyrodin H, Afanasenko V, et al. (2024) The role of artificial intelligence in genomics. Agric Biotechnol J 16(2), 195-279.
Mumtaj Begum H (2022) Scientometric Analysis of the Research Paper Output on Artificial Intelligence: A Study. Indian J Inf Sources Serv 12(1), 52-58.
Pingali P, Aiyar A, Abraham M, et al. (2019) Indian food systems towards 2050: challenges and opportunities. Transform Food Syst Rising India 1-14.
Radhika A, Masood MS (2022) Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J Internet Serv Inf Secur 12(4), 177-196.
Rose DC, Chilvers J (2018) Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Front Sustain Food Syst 2, e87.
Sanjeevi P, Prasanna S, Siva Kumar B, et al. (2020) Precision agriculture and farming using Internet of Things based on wireless sensor network. Trans Emerg Telecommun Technol 31(12), e3978.
Shaikh FK, Karim S, Zeadally S, Nebhen J (2022) Recent trends in internet-of-things-enabled sensor technologies for smart agriculture. IEEE Internet Things J 9(23), 23583-23598.
Shamshiri RR, Jones JW, Thorp KR, et al. (2018) Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. Int Agrophys 32(2), 287-302.
Surendar A, Veerappan S, Sindhu S, Arvinth N (2024) A Bibliometric Study of Publication - Citations in a Range of Journal Articles. Indian J Inf Sources Serv 14(2), 97–103.
Ulibarri N, Ajibade I, Galappaththi EK, et al. Global Adaptation Mapping Initiative Team (2022) A global assessment of policy tools to support climate adaptation. Clim Policy 22(1), 77-96.
Veerasamy K, Fredrik ET (2023) Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. J Internet Serv Inf Secur 13(3), 158-169.
Vranić P, Glišović S (2018) Decision making support tools for adaptation to climate change-a mini review. Facta Univ Ser: Work & Living Environ Protect 73-80.
Zoran G, Nemanja A, Srđan B (2022) Comparative Analysis of Old-Growth Stands Janj and Lom Using Vegetation Indices. Arch Tech Sci 2(27), 57-62.