ارزیابی تنوع ژنتیکی ژنوتیپ‌های زیتون بر اساس DNA با استفاده از نشانگرهای مولکولی RAPD

نوع مقاله : مقاله پژوهشی

نویسنده

گروه باغبانی و طراحی فضای سبز، دانشکده کشاورزی و تالاب‌ها، دانشگاه ذی‌قار، عراق.

چکیده

هدف: درخت زیتون (Olea europaea L.) که یکی از ارکان کشاورزی مدیترانه‌ای به شمار می‌رود، از کهن‌ترین گونه‌های میوه‌ای کشت‌شده و متعلق به خانواده زیتونیان (Oleaceae) است. با افزایش تقاضای جهانی برای روغن زیتون، نیاز به افزایش تولید از طریق مطالعه و حفاظت از تنوع ژنتیکی بیش از پیش احساس می‌شود. نشانگرهای DNA چندشکلی تکثیر‌شده تصادفی (RAPD) روشی ساده، سریع، مقرون‌به‌صرفه و قابل تکرار برای ارزیابی تنوع ژنتیکی در سطوح بین‌گونه‌ای و درون‌گونه‌ای فراهم می‌کنند. هدف از این مطالعه، ارزیابی تنوع ژنتیکی و روابط بین ژنوتیپ‌های زیتون در عراق با استفاده از نشانگرهای مولکولی RAPD به منظور پشتیبانی از برنامه‌های اصلاحی و حفاظت ژرم‌پلاسم بود.
مواد و روش‌ها: این مطالعه در سال ۲۰۲۳ در آزمایشگاه‌های بیوتکنولوژی دانشکده کشاورزی دانشگاه بغداد انجام شد. در این تحقیق، ده ژنوتیپ زیتون شامل Arbequina، Ashrasy، Zaity، Efreny، Leccino، Gemlik، Koroneiki، Dahkan، Alshamy و Frantoio که از مناطق جغرافیایی مختلف عراق جمع‌آوری شده بودند، مورد تجزیه و تحلیل قرار گرفتند. DNA ژنومی از نمونه‌های برگ تازه استخراج شد و تنوع ژنتیکی با استفاده از ده آغازگر RAPD شاملOPA1، OPA8، OPB8، OPC3، OPC7، OPJ5، OPR2، OPV1، OPX4 و OPY3 ارزیابی گردید. محصولات واکنش زنجیره‌ای پلیمراز (PCR) از طریق الکتروفورز روی ژل برای شناسایی باندهای چندشکلی تحلیل شدند.
نتایج: ده آغازگر RAPD مجموعاً ۹۸ باند تولید کردند. آغازگر OPX4 بیشترین تعداد باند (۱۳ باند) و آغازگرهای OPA1 و OPC3 کمترین (هر کدام ۷ باند) را تولید کردند. میانگین تعداد باندها برای هر آغازگر ۹.۸ بود. تحلیل شباهت ژنتیکی نشان داد که ژنوتیپ‌های Dahkan و Koroneiki بیشترین نزدیکی را با ضریب شباهت 714/0 دارند که بیانگر فاصله ژنتیکی پایین بین آن‌هاست. تحلیل خوشه‌ای با استفاده از روش گروه‌بندی بدون وزن با میانگین حسابی (UPGMA) ژنوتیپ‌ها را به سه خوشه اصلی تقسیم کرد: خوشه اول (Arbequina، Alshamy، Dahkan، Koroneiki، Ashrasy)، خوشه دوم (Leccino، Zaity، Efreny ) و خوشه سوم (Gemlik، Frantoio ). این گروه‌بندی‌ها نشانگر پروفایل‌های ژنتیکی متمایز در میان ژنوتیپ‌ها هستند.
نتیجه‌گیری: این مطالعه تنوع ژنتیکی قابل توجهی را در میان ژنوتیپ‌های زیتون عراقی نشان می‌دهد و بینش‌های حیاتی برای برنامه‌های اصلاحی با هدف افزایش عملکرد و مقاومت فراهم می‌کند. روابط ژنتیکی شناسایی‌شده و الگوهای خوشه‌ای پشتیبانی‌کننده از راهبردهای هدفمند حفاظت از ژرم‌پلاسم برای حفظ منابع ژنتیکی ارزشمند جهت تولید پایدار زیتون در عراق هستند.

کلیدواژه‌ها


عنوان مقاله [English]

DNA-based assessment of genetic diversity of olive genotypes using RAPD molecular markers

نویسنده [English]

  • Falah H.R. Al-Miahy
Department of Horticulture and Landscape design, Faculty of Agriculture and Marshes, University of Thi Qar, Iraq.
چکیده [English]

Objective
The olive tree (Olea europaea L.), a cornerstone of Mediterranean agriculture, is one of the oldest cultivated fruit species, belonging to the Oleaceae family. Global request for olive oil continues to rise, necessitating enhanced production through the investigation and conservation of genetic diversity. Random Amplified Polymorphic DNA (RAPD) markers offer a simple, rapid, cost-effective, and reproducible method to evaluate genetic variation at both intergeneric and intrageneric levels. This investigation aimed to evaluate the genetic diversity and relationships among olive genotypes in Iraq applying RAPD molecular markers to support breeding and conservation efforts.

Materials and methods
Managed in 2023 at the Biotechnology Laboratories, Faculty of Agriculture, University of Baghdad, this investigation analyzed ten olive genotypes; Arbequina, Ashrasy, Zaity, Efreny, Leccino, Gemlik, Koroneiki, Dahkan, Alshamy, and Frantoio gathered from diverse geographical regions of Iraq. Genomic DNA was extracted from fresh leaf samples, and genetic diversity was evaluated applying ten RAPD primers: OPA1, OPA8, OPB8, OPC3, OPC7, OPJ5, OPR2, OPV1, OPX4, and OPY3. Polymerase chain reaction (PCR) amplification products were analyzed via gel electrophoresis to identify polymorphic bands.

Results
The ten RAPD primers generated a total of 98 bands, with OPX4 producing the highest number of bands (13) and OPA1 and OPC3 the lowest (7 each), averaging 9.8 bands per primer. Genetic similarity analysis revealed the closest relationship between Dahkan and Koroneiki, with a similarity coefficient of 0.714, denoting low genetic distance. Cluster analysis, based on the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), categorized the genotypes into three main clusters: Cluster 1 (Arbequina, Alshamy, Dahkan, Koroneiki, Ashrasy), Cluster 2 (Leccino, Zaity, Efreny), and Cluster 3 (Gemlik, Frantoio). These groupings reflect distinct genetic profiles among the genotypes.

Conclusions
This investigation underscores meaningful genetic diversity among Iraqi olive genotypes, providing critical insights for breeding programs aimed at improving yield and resilience. The identified genetic relationships and clustering patterns support targeted germplasm conservation strategies to preserve valuable genetic resources for sustainable olive production in Iraq.

کلیدواژه‌ها [English]

  • genetic diversity
  • germplasm conservation
  • Olea europaea
  • olive genotypes
  • RAPD markers
Belaj, A., Muñoz-Diez, C., Baldoni, L., Porceddu, A., Barranco, D., & Satovic, Z. (2007). Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Annals of Botany, 100(3), 449-458. https://doi.org/10.1093/aob/mcm132
Belaj, A., Trujillo, I., & Rallo, L. (2002). RAPD analysis supports the autochthonous origin of olive cultivars. Acta Horticulturae, 586, 83-86. https://doi.org/10.17660/ActaHortic.2002.586.8
Bradeen, J. M., Staub, J. E., Wye, C., Antonise, R., & Peleman, J. (2001). Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome, 44(1), 111-119. https://doi.org/10.1139/g00-093
Brake, M., Migdadi, H., Al-Gharaibeh, M., Ayoub, S., Haddad, N., & El Oqlah, A. (2014). Characterization of Jordanian olive cultivars (Olea europaea L.) using RAPD and ISSR molecular markers. Scientia Horticulturae, 176, 282-289. https://doi.org/10.1016/j.scienta.2014.07.012
Brickner, J. H., Lynch, T. J., Zeilinger, D., & Orias, E. (1996). Identification, mapping, and linkage analysis of randomly amplified DNA polymorphisms in Tetrahymena thermophila. Genetics, 143(2), 811-821. https://doi.org/10.1093/genetics/143.2.811
del Río, C., & Caballero, J. M. (1994). Preliminary agronomical characterization of 131 cultivars introduced in the olive germplasm bank of Cordoba in March 1987. Acta Horticulturae, 356, 110-115. https://doi.org/10.17660/ActaHortic.1994.356.24
Deng, C. L., Zhou, J., & Gao, W. J. (2006). Assessment of genetic diversity of Lycoris longituba (Amaryllidaceae) detected by RAPDs. Journal of Genetics, 85(3), 205-209. https://doi.org/10.1007/BF02935332
Doyle, J. J. (1991). DNA protocols for plants. In G. M. Hewitt, A. W. B. Johnston, & J. P. W. Young (Eds.), Molecular techniques in taxonomy (pp. 283-293). Springer. https://doi.org/10.1007/978-3-642-83962-7_18
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19(1), 11-15. https://www.scirp.org/reference/referencespapers?referenceid=1698909
Fabbri, A., Baldoni, L., Caruso, T., & Famiani, F. (2024). Botany and production of the olive. In The olive: Botany and production (pp. 1-20). CABI Publishing. https://doi.org/10.1079/9781789247350.0002
Falakro, K., Jahangirzadeh Khiavi, S., Gholami, M., & Pour Azizan, S. (2022). RAPD markers, instruments for determining the genetic relationships of tea plant in Iran. Journal of Plant Research (Iranian Journal of Biology), 35(1), 175-189.
Genaidy, E. A. E., Merwad, M. A., & Haggag, L. F. (2015). Effect of algae, humic acid, and waste organic material in culture media on growth performance of “Picual” olive seedlings. International Journal of ChemTech Research, 8(11), 43-50. https://www.sphinxsai.com/2015/ch_vol8_no11/1/(43-50)V8N11CT.pdf
Golmohammadi, M., Sofalian, O., Ahmadi, J., Taheri, M., Ghanbari, A., & Rasoli, V. (2019). Evaluation of genetic variation in some Iranian and foreign cultivars and promising genotypes of olive using ISSR markers. Modern Genetics Journal, 13(4), 479-487. https://mg.genetics.ir/article_83.html
Hadeib, T., & Hassawi, D. S. (2006). Genetic analysis of Jordanian olive (Olea europaea L.) using random amplified polymorphic DNA (RAPD). Jordan Journal of Agricultural Sciences, 2(2), 95-102.
Hassawi, D. S., & Hadeib, T. (2004). Genetic analysis of olive genotypes (Olea europaea L.) using random amplified polymorphic DNA (RAPD). Journal of Genetics and Breeding, 58(2), 141-148. https://scispace.com/journals/journal-of-genetics-and-breeding-13af0sf0/2004
Hernández, P., de la Rosa, R., & Rallo, L. (2001). Development of SCAR markers in olive (Olea europaea) by direct sequencing of RAPD products: Applications in olive germplasm evaluation and mapping. Theoretical and Applied Genetics, 103(5), 788-791. https://doi.org/10.1007/s001220100603
Javanmard, A., Mohammadabadi, M. R., Zarrigabayi, G. E., & Gharahedaghi, A. A. (2008). Polymorphism within the intron region of the bovine leptin gene in Iranian Sarabi cattle (Bos taurus). Russian Journal of Genetics, 44(4), 495-497. https://doi.org/10.1134/S1022795408040169
Khanam, S., Sham, A., Bennetzen, J. L., & Aly, M. A. M. (2012). Analysis of molecular marker-based characterization and genetic variation in date palm (Phoenix dactylifera L.). Australian Journal of Crop Science, 6(8), 1236-1244. https://doi.org/10.3316/informit.797136773999973
Ma, R., Yli-Mattila, T., & Pulli, S. (2004). Phylogenetic relationships among genotypes of worldwide collection of spring and winter ryes (Secale cereale L.) determined by RAPD-PCR markers. Hereditas, 140(3), 210-221.
Maiuf, M. H., & Al-Mayahi, F. H. (2023). Morphological study of olive cultivars Olea europaea L. cultivated in central and southern Iraq. In IOP Conference Series: Earth and Environmental Science (Vol. 1262, No. 4, p. 042064). IOP Publishing. https://doi.org/10.1088/1755-1315/1262/4/042064
Mohammadabadi, M. (2016). Inter-simple sequence repeat loci associations with predicted breeding values of body weight in Kermani sheep. Genetics in the Third Millennium, 14(4), 4386-4393. https://sciexplore.ir/Documents/Details/472-591-539-924
Mohammadabadi, M. R., Torabi, A., Tahmourespoor, M., & Baghizadeh, A. (2010). Analysis of bovine growth hormone gene polymorphism of local and Holstein cattle breeds in Kerman province of Iran using polymerase chain reaction restriction fragment length. African Journal of Biotechnology, 9(41), 6848-6852. https://www.ajol.info/index.php/ajb/article/view/130242
Mohammadabadi, M., Akhtarpoor, A., Khezri, A., Babenko, O., Stavetska, R. V., Tytarenko, I., Ievstafiieva, Y., Buchkovska, V., Slynko, V., & Afanasenko, V. (2024a). The role and diverse applications of machine learning in genetics, breeding, and biotechnology of livestock and poultry. Agricultural Biotechnology Journal, 16(4), 413-442. https://doi.org/10.22103/jab.2025.24662.1644
Mohammadabadi, M., Babenko Ivanivna, O., Borshch, O., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024c). Measuring the relative expression pattern of the UCP2 gene in different tissues of the Raini Cashmere goat. Agricultural Biotechnology Journal, 16(3), 317-332. https://doi.org/10.22103/jab.2024.24337.1627
Mohammadabadi, M., Kheyrodin, H., Afanasenko, V., Babenko Ivanivna, O., Klopenko, N., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024b). The role of artificial intelligence in genomics. Agricultural Biotechnology Journal, 16(2), 195-279. https://doi.org/10.22103/jab.2024.23558.1575
Mohammadabadi, M., Meymandi, M. G., Montazeri, M., Afanasenko, V., & Kalashnyk, O. (2021a). Molecular characterization of Iranian dromedaries using microsatellite markers. Acta Agronomica, 69(4), 321-330. https://api.semanticscholar.org/CorpusID:249364533
Mohammadabadi, M., Oleshko, V., Oleshko, O., Heiko, L., Starostenko, I., Kunovskii, J., Bazaeva, A., & Roudbari, Z. (2021b). Using inter simple sequence repeat multi-loci markers for studying genetic diversity in guppy fish. Turkish Journal of Fisheries and Aquatic Sciences, 21, 603-613. https://doi.org/10.4194/1303-2712-v21_12_03
Mohammadifar, A., & Mohammadabadi, M. (2018). Melanocortin-3 receptor (MC3R) gene association with growth and egg production traits in Fars indigenous chicken. Malaysian Applied Biology, 47(3), 85-90.
Mohammadifar, A., & Mohammadabadi, M. R. (2017). The effect of uncoupling protein polymorphisms on growth, breeding value of growth, and reproductive traits in the Fars indigenous chicken. Iranian Journal of Applied Animal Science, 7(4), 679-685. https://journals.iau.ir/article_535799.html
Mohammadinejad, F., Mohammadabadi, M., Roudbari, Z., & Sadkowski, T. (2022). Identification of key genes and biological pathways associated with skeletal muscle maturation and hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals, 12(24), 3471. https://doi.org/10.3390/ani12243471
Navero, D. B. (2000). World catalogue of olive varieties. International Olive Oil Council. https://books.google.com/books?id=Y7gZywAACAAJ
Noori, A. N., Behzadi, M. R. B., & Mohammadabadi, M. R. (2017). Expression pattern of Rheb gene in Jabal Barez Red goat. Indian Journal of Animal Science, 87(11), 1375-1378. https://doi.org/10.56093/ijans.v87i11.75890
Pan, S. J., & Chen, Q. F. (2010). Genetic mapping of common buckwheat using DNA, protein and morphological markers. Hereditas, 147(1), 27-33. https://doi.org/10.1111/j.1601-5223.2009.02116.x
Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225-238. https://doi.org/10.1007/BF00564200
Rawashdseh, I. (2003). Detecting genetic variation in mutants of olive cultivar Nabali using RAPD‐PCR technique in Jordan. Dirasat Agric. Sci., 30(2), 133-136.
Saadatabadi, L. M., Mohammadabadi, M., Nanaei, H. A., Ghanatsaman, Z. A., Stavetska, R. V., Kalashnyk, O., Kochuk-Yashchenko, O. A., & Kucher, D. M. (2023). Unraveling candidate genes related to heat tolerance and immune response traits in some native sheep using whole genome sequencing data. Small Ruminant Research, 225, Article 107018. https://doi.org/10.1016/j.smallrumres.2023.107018
Sanz-Cortés, F., Badenes, M. L., Paz, S., Iniguez, A., & Llacer, G. (2001). Molecular characterization of olive cultivars using RAPD markers. Journal of the American Society for Horticultural Science, 126(1), 7-12. https://doi.org/10.21273/JASHS.126.1.07
Shokri, S., Khezri, A., Mohammadabadi, M., & Kheyrodin, H. (2023). The expression of MYH7 gene in femur, humeral muscle, and back muscle tissues of fattening lambs of the Kermani breed. Agricultural Biotechnology Journal, 15(2), 217-236. https://doi.org/10.22103/jab.2023.21524.1486
Singh, J. P., Verma, R., & Chaudhuri, P. (2006). Random amplified polymorphic DNA (RAPD) analysis of Mycobacterium tuberculosis strains in India. Journal of Veterinary Science, 7(2), 181-187. https://doi.org/10.4142/jvs.2006.7.2.181
Sulimova, G. E., Azari, M. A., Rostamzadeh, J., Mohammadabadi, M. R., & Lazebny, O. E. (2007). κ‐casein gene (CSN3) allelic polymorphism in Russian cattle breeds and its information value as a genetic marker. Russian Journal of Genetics, 43, 73-79. https://doi.org/10.1134/S1022795407010115
Swofford, D. L. (1990). Phylogenetic reconstruction. In Molecular Systematics (pp. 411-501).
Tisarum, R., Samphumphuang, T., Prommee, W., Mongkolsiriwatana, C., & Cha-Um, S. (2020). True-to-type micropropagated plants of para rubber (Hevea brasiliensis Mull. Arg.) via somatic embryogenesis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 1901-1914. https://doi.org/10.15835/48412034
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23(21), 4407-4414. https://doi.org/10.1093/nar/23.21.4407
Wiesman, Z., Avidan, N., Lavee, S., & Quebedeaux, B. (1998). Molecular characterization of common olive varieties in Israel and the West Bank using randomly amplified polymorphic DNA (RAPD) markers. Journal of the American Society for Horticultural Science, 123(5), 837-841. https://doi.org/10.21273/JASHS.123.5.837