ارزیابی روابط ژنتیکی و بیان ژن کاتالاز در پاسخ به تنش خشکی در ارقام مختلف بادمجان (Solanum melongena L.)

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیأت علمی پژوهشکده فناوری تولیدات گیاهی، پژوهشگاه افضلی پور، دانشگاه شهید باهنر کرمان، ایران

10.22103/jab.2025.23539.1669

چکیده

هدف: بادمجان (Solanum melongena L.) یکی از سبزیجات اقتصادی مهم است و کمیت و کیفیت آن تحت تاثیر کمبود آب است. مطالعه رابطه ژنتیکی و ژن‌های دخیل در تحمل به استرس خشکی در برنامه‌های اصلاح نباتات ضروری است و به اتخاذ استراتژی‌های مدیریتی در مناطق خشک کمک می‌کند. در این مطالعه، تنوع ژنتیکی و ساختار جمعیتی ارقام بادمجان با استفاده از نشانگر ISSR تعیین گردید. علاوه بر این، بیان ژن کاتالاز در پاسخ به تنش خشکی در سه رقم انتخابی مورد ارزیابی قرار گرفت.
مواد و روش‌ها: DNA از نمونه‌های برگ 23 رقم بادمجان به روش CTAB استخراج و واکنش زنجیره ای پلیمراز با استفاده از 10 آغازگر ISSR انجام شد. سه رقم گرتا، سالی و ملوسینا از هر گروه ناشی از تجزیه خوشه‌ای جهت ارزیابی بیان ژن در شرایط تنش خشکی انتخاب شدند. تیمارهای تنش خشکی در مرحله اول رشد گیاه با قطع آبیاری به مدت 17 و 23 روز در تنش خشکی متوسط و طولانی مدت اعمال شد. آغازگر اختصاصی برای ارزیابی بیان ژن کاتالاز بود. ارزیابی RT-qPCR در سه تکرار تکنیکی با استفاده از Rotor-Gene Q انجام شد. ژن مرجع برای نرمال‌سازی بیان ژن در این مطالعه اکتین بود.
نتایج: میانگین درصد پلی‌مورفیسم در این مطالعه %73 بود. پرایمر (AG)8YC بالاترین درصد پلی‌مورفیسم و شاخص نشانگر همراه با PIC و شاخص شانون بالا را نشان داد. بر اساس آنالیز واریانس مولکولی، واریانس ژنتیکی بین سه زیرجمعیت بسیار معنی‌دار بود. تجزیه ساختار جمعیت و تجزیه خوشه‌ای بر اساس داده‌های فنوتیپی و مولکولی ارقام را به سه گروه اصلی تقسیم کرد. بیان ژن کاتالاز تحت تنش خشکی بلندمدت در مقایسه با شاهد به طور معنی‌داری در سه رقم بادمجان افزایش یافته است. رقم ملوسینا با مقدار 56/3 بیشترین بیان ژن را در تنش خشکی بلندمدت نشان داد.
نتیجه‌گیری: نشانگر ISSR به‌عنوان یک ابزار مناسب برای ارزیابی تمایز داخل جمعیت‌های بادمجان بکار می‌رود و این نشانگر در ترکیب با سایر نشانگرهای همبارز می‌تواند برای مطالعات بعدی در بادمجان استفاده شود. علاوه بر این، ژن کاتالاز نقش مهمی را در برنامه‌های اصلاحی بادمجان در مناطق خشک ایفاء می‌کند و در صورت تایید نتایج در مطالعات بعدی، می‌توان رقم ملوسینا را به عنوان یک رقم سازگار به خشکی معرفی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of genetic relationships, and catalase gene expression in response to drought stress in various cultivars of eggplant (Solanum melongena L.)

نویسنده [English]

  • Fatemeh Ebrahimi
academic staff of Research and Technology Institute of Plant Production, Afzalipour Research Institute, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Objective
Eggplant (Solanum melongena L.) is an economically important vegetable crop and its quantity and quality are influenced by water deficit. The study of genetic relationships and the genes involved in drought stress tolerance is essential in plant breeding programs and will help in the adoption of management strategies in dry areas. In this study, genetic variation and population structure of eggplant cultivars were identified using ISSR marker. Additionally, the expression of the catalase gene in response to drought stress was evaluated in selected three cultivars.

Materials and methods
DNA was extracted from leaf samples of 23 eggplants using the modified CTAB method and a polymerase chain reaction was done by 10 ISSR primers. Three cultivars Greta, Sally, and Melusina were selected from each class identified through cluster analysis to assess gene expression under drought stress. Drought treatments were imposed in the first stage of plant growth by stopping irrigation for 17 and 23 days in moderate and long-term stress, respectively. Gene-specific primer to assess gene expression was catalase. RT-qPCR was done in technical triplicates using a Rotor-Gene Q. The reference gene for normalization of gene expression was actin.

Results
The mean polymorphism percentage in this study was 73%. Primer (AG)8YC exhibited the highest polymorphism percentage and marker index, along with high PIC and Shannon index values. According to the analysis of molecular variance, the genetic variance between the three subpopulations was highly significant. Population structure analysis and cluster analysis based on phenotypic and molecular data divided cultivars into three main clusters. Catalase gene expression has been significantly increased under long-term drought stress in compared to the control in three cultivars of eggplant. The Melusina cultivar, with a value of 3.56 showed the highest gene expression in long-term drought stress.

Conclusions
The ISSR marker serves as a suitable tool for evaluating the differentiation within eggplant populations. This marker in combination with other codominance primers can be used for future studies in eggplant. Additionally, the catalase gene plays a significant role in breeding programs of eggplant in arid regions and the Melusina cultivar can be introduced as a drought-adapted cultivar, if the results are confirmed by subsequent studies.

کلیدواژه‌ها [English]

  • ISSR marker
  • genetic diversity
  • the gene overexpression
  • water stress
Ali, Z., Xu, Z. L., Zhang, D. Y., He, X. L., Bahadur, S., & Yi, J. X. (2011). Molecular diversity analysis of eggplant (Solanum melongena) genetic resources. Genetics and Molecular Research, 10(2), 1141–1155. https://doi.org/10.4238/vol10-2gmr1279
Begna, T. (2021). Role and economic importance of crop genetic diversity in food security. International Journal of Agricultural Science and Food Technology, 7(1), 164–169. https://doi.org/10.17352/2455-815X.000104
Cockerham, C. C. (1973). Analyses of gene frequencies. Genetics, 74(4), 679–700. https://doi.org/10.1093/genetics/74.4.679
Dudziak, K., Zapalska, M., Börner, A., Szczerba, H., Kowalczyk, K., & Nowak, M. (2019). Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress. Scientific Reports, 9(1), 2743. https://doi.org/10.1038/s41598-019-39154-w
Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7
Ebrahimi, F. (2022). Allelic variation, population structure, and genetic diversity in different genotypes of date palm (Phoenix dactylifera L.) using ISSR marker. Agricultural Biotechnology Journal, 14(1), 135–154. https://doi.org/10.22103/jab.2022.18768.1368
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Ghasemi, M., Baghizadeh, A., & Mohammadabadi, M. R. (2010). Determination of genetic polymorphism in Kerman Holstein and Jersey cattle population using ISSR markers. Australian Journal of Basic and Applied Sciences, 4(12), 5758–5760. https://sciexplore.ir/Documents/Details/557-435-505-219
Guan, L. M., & Scandalios, J. G. (2000). Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radical Biology and Medicine, 28(8), 1182–1190. https://doi.org/10.1016/S0891-5849(00)00212-4
Harb, A., Awad, D., & Samarah, N. (2015). Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions, 10(1), 109–116. https://doi.org/10.1080/17429145.2015.1033023
Hayatgheibi, H., Hallingbäck, H. R., Lundqvist, S.-O., Grahn, T., Scheepers, G., Nordström, P., Chen, Z. Q., Kärkkäinen, K., Wu, H. X., & García-Gil, M. R. (2024). Implications of accounting for marker-based population structure in the quantitative genetic evaluation of genetic parameters related to growth and wood properties in Norway spruce. BMC Genomic Data, 25(1), Article 60. https://doi.org/10.1186/s12863-024-01241-x
Hu, L., Yang, Y., Jiang, L., & Liu, S. (2016). The catalase gene family in cucumber: Genome-wide identification and organization. Genetics and Molecular Biology, 39(3), 408–415. https://doi.org/10.1590/1678-4685-GMB-2015-0192
Hussain, H., & Nisar, M. (2020). Assessment of plant genetic variations using molecular markers: A review. Journal of Applied Biology and Biotechnology, 8(5), 99–109. https://doi.org/10.7324/JABB.2020.80514
Isshiki, S., Iwata, N., & Khan, M. R. (2008). ISSR variation in eggplant (Solanum melongena L.) and related Solanum species. Scientia Horticulturae, 117(3), 186–190. https://doi.org/10.1016/j.scienta.2008.04.003
Kumar, A., Mishra, P., Baskaran, K., Shukla, A. K., Shasany, A. K., & Sundaresan, V. (2016). Higher efficiency of ISSR markers over plastid psbA-trnH region in resolving taxonomical status of genus Ocimum L. Ecology and Evolution, 6(21), 7671–7682. https://doi.org/10.1002/ece3.2483
Liu, Z., Wang, D., Tang, H., Li, H., Zhang, X., Dong, S., Zhang, L., & Yang, L. (2023). Identification and analysis of the catalase gene family response to abiotic stress in Nicotiana tabacum L. Agronomy, 13(3), Article 936. https://doi.org/10.3390/agronomy13030936
Luna, C. M., Pastori, G. M., Driscoll, S., Groten, K., Bernard, S., & Foyer, C. H. (2005). Drought controls on H₂O₂ accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany, 56(411), 417–423. https://doi.org/10.1093/jxb/eri039
Markert, J. A., Champlin, D. M., Gutjahr-Gobell, R., Grear, J. S., Kuhn, A., McGreevy, T. J., Jr., Roth, A., Bagley, M. J., & Nacci, D. E. (2010). Population genetic diversity and fitness in multiple environments. BMC Evolutionary Biology, 10(1), Article 205. https://doi.org/10.1186/1471-2148-10-205
Martinez-Arias, R., Calafell, F., Mateu, E., Comas, D., Andrés, A., & Bertranpetit, J. (2001). Sequence variability of a human pseudogene. Genome Research, 11(6), 1071–1085. https://doi.org/10.1101/gr.167701
Mohammadabadi, M., Oleshko, V., Oleshko, O., Heiko, L., Starostenko, I., Kunovskii, J., Bazaeva, A., & Roudbari, Z. (2021). Using inter simple sequence repeat multi-loci markers for studying genetic diversity in guppy fish. Turkish Journal of Fisheries and Aquatic Sciences, 21(12), 603–613. https://doi.org/10.4194/1303-2712-v21_12_03
Mohlke, K. L., Lange, E. M., Valle, T. T., Ghosh, S., Magnuson, V. L., Silander, K., Watanabe, R. M., Chines, P. S., Bergman, R. N., Tuomilehto, J., Collins, F. S., & Boehnke, M. (2001). Linkage disequilibrium between microsatellite markers extends beyond 1 cM on chromosome 20 in Finns. Genome Research, 11(7), 1221–1226. https://doi.org/10.1101/gr.173201
Mwinuka, P. R., Mbilinyi, B. P., Mbungu, W. B., Mourice, S. K., Mahoo, H. F., & Schmitter, P. (2021). Optimizing water and nitrogen application for neglected horticultural species in tropical sub-humid climate areas: A case of African eggplant (Solanum aethiopicum L.). Scientia Horticulturae, 276, Article 109756. https://doi.org/10.1016/j.scienta.2020.109756
Niño-Medina, G., Muy-Rangel, D., Gardea-Béjar, A., González-Aguilar, G., Heredia, B., Báez-Sañudo, M., Siller-Cepeda, J., & Vélez de la Rocha, R. (2014). Nutritional and nutraceutical components of commercial eggplant types grown in Sinaloa, Mexico. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 538–544. https://doi.org/10.15835/nbha4229573
Ouborg, N. J. (2010). Integrating population genetics and conservation biology in the era of genomics. Biology Letters, 6(1), 3–6. https://doi.org/10.1098/rsbl.2009.0590
Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2(3), 225–238. https://doi.org/10.1007/BF00564200
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945
Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., & Allard, R. W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences, 81(24), 8014–8018. https://doi.org/10.1073/pnas.81.24.8014
Samtiya, M., Aluko, R. E., Dhewa, T., & Moreno-Rojas, J. M. (2021). Potential health benefits of plant food-derived bioactive components. Foods, 10(4), Article 839. https://doi.org/10.3390/foods10040839
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Syfert, M. M., Castañeda-Álvarez, N. P., Khoury, C. K., Särkinen, T., Sosa, C. C., Achicanoy, H. A., Bernau, V., Prohens, J., Daunay, M.-C., & Knapp, S. (2016). Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. American Journal of Botany, 103(4), 635–651. https://doi.org/10.3732/ajb.1500539
Taga, M. S., Miller, E. E., & Pratt, D. E. (1984). Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society, 61(5), 928–931. https://doi.org/10.1007/BF02542169
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
Vuosku, J., Sutela, S., Kestilä, J., Jokela, A., Sarjala, T., & Häggman, H. (2015). Expression of catalase and retinoblastoma-related protein genes associated with cell death processes in Scots pine zygotic embryogenesis. BMC Plant Biology, 15(1), Article 88. https://doi.org/10.1186/s12870-015-0462-0
Wang, C.-A., & Jost, Y. T. (2013). Entropy and the species accumulation curve: A novel entropy estimator via discovery rates of new species. Methods in Ecology and Evolution, 4(11), 1091–1100. https://doi.org/10.1111/2041-210X.12108
Wang, W., Cheng, Y., Chen, D., Liu, D., Hu, M., Dong, J., Zhang, X., Song, L., & Shen, F. (2019). The catalase gene family in cotton: Genome-wide characterization and bioinformatics analysis. Cells, 8(2), Article 86. https://doi.org/10.3390/cells8020086
Weese, T. L., & Bohs, L. (2010). Eggplant origins: Out of Africa, into the Orient. Taxon, 59(1), 49–56. https://doi.org/10.1002/tax.591006
Weihai, M., Jinxin, Y., & Sihachakr, D. (2008). Development of core subset of the collection of Chinese cultivated eggplants using morphological-based passport data. Plant Genetic Resources: Characterization and Utilization, 6(1), 33–40. https://doi.org/10.1017/S1479262108923790
Weising, K., Nybom, H., Wolff, K., & Kahl, G. (2005). Applications of DNA fingerprinting in plant sciences. In K. Weising, H. Nybom, M. Pfenninger, K. Wolff, & G. Kahl (Eds.), DNA fingerprinting in plants: Principles, methods, and applications (2nd ed., pp. 235–276). CRC Press.
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), Article 50. https://doi.org/10.3390/horticulturae7030050
Zhang, Y., Wang, L. F., Li, T., & Liu, W. (2021). Mutual promotion of LAP2 and CAT2 synergistically regulates plant salt and osmotic stress tolerance. Frontiers in Plant Science, 12, Article 672672. https://doi.org/10.3389/fpls.2021.672672