Abbas, O. N., Mhawesh, A. A., & Al-Shaibani, A. B. (2020). Molecular identification of pathogenic Klebsiella pneumoniae strains producing biofilm. Medico-Legal Update, 20(3), 1068–1074. https://doi.org/10.37506/MLU.V20I3.1544
Abdul-Razzaq, M. S., Al-Khafaji, J. K. T., & Al-Maamory, E. H. K. A. (2014). Molecular characterization of capsular polysaccharide genes of Klebsiella pneumoniae in Iraq. International Journal of Current Microbiology and Applied Sciences, 3(7), 224–234.
Al-Aammar, M. H. (2023). Molecular detection of some virulence factors of hypervirulent Klebsiella pneumoniae that are associated with pathogenicity. Al-Kufa University Journal for Biology, 15(2), 73–80. https://doi.org/10.36320/ajb/v15.i2.12008
Ali, M. H., Anwar, S., Toma, N. J., Rafid, I., Hasan, M. K., & Foysal, M. J. (2020). Molecular detection and PCR-RFLP analysis of Mucoviscosity-associated gene A (magA) in clinical isolates of multidrug-resistant Klebsiella pneumoniae in Bangladesh. The Open Microbiology Journal, 14(1), 196–204. https://doi.org/10.2174/1874285802014010196
Al-Kamoosi, A., & Al-Azawi, I. (2021). Detection of capsular polysaccharide virulence genes rmpA and magA of Klebsiella pneumoniae isolate from diabetic foot ulcer patient in Najaf Governorate in Iraq. Indian Journal of Forensic Medicine & Toxicology, 15(2), 3061–3067. https://doi.org/10.37506/ijfmt.v15i2.14841
Almjalawi, B. S. A., Al-Awade, H. A. R., Al-Mafragy, H. S., & AL Masaoodi, N. (2022). Antibacterial activity of Capsicum annuum L. juice against Klebsiella pneumoniae isolated from respiratory tract infections. Iranian Journal of War and Public Health, 14(2), 139–146. http://ijwph.ir/article-1-1146-en.html
Amraie, H., Shakib, P., Rouhi, S., Bakhshandeh, N., & Zamanzad, B. (2014). Prevalence assessment of magA gene and antimicrobial susceptibility of Klebsiella pneumoniae isolated from clinical specimens in Shahrekord, Iran. Iranian Journal of Microbiology, 6(5), 311–316. https://ijm.tums.ac.ir/index.php/ijm/article/view/379
Bakhtiari, R., Javadi, A., Aminzadeh, M., Molaee-Aghaee, E., & Shaffaghat, Z. (2021). Association between presence of rmpA, mrkA and mrkD genes and antibiotic resistance in clinical Klebsiella pneumoniae isolates from hospitals in Tehran, Iran. Iranian Journal of Public Health, 50(5), 1009–1016. https://doi.org/10.18502/ijph.v50i5.6118
Behera, B., Sahu, K. K., Bhoi, P., & Mohanty, J. N. (2020). Prevalence and antimicrobial susceptibility patterns of bacteria in ICU patients with lower respiratory tract infection: A cross-sectional study. Journal of Acute Disease, 9(4), 157–160. https://doi.org/10.4103/2221-6189.288593
Brisse, S., Grimont, F., & Grimont, P. A. D. (2006). The Genus Klebsiella. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30746-X_8
Brooks, G. F., Carrol, K. C., Butel, J. S., & Morse, S.A. (2007) Jawetz, Melnick and Adelber’s Medical Microbiology. 24th Edition, McGraw Hill Companies, New York, 44. https://www.scirp.org/reference/referencespapers?referenceid=3405269
Collee, J., Fraser, A., Marmion, B., & Simons, A. (1996). Mackie and McCartney’s practical medical microbiology (14th ed., p. 561). Churchill Livingstone.
Devanathan, K., Sivaraman, U., Chinnadurai, R., Easow, J. M., & Vinayagam, V. (2024). Prevalence of hypervirulent rmpA and magA genes in clinical isolates of Klebsiella pneumoniae and their association with drug resistant pattern: A cross-sectional study. Journal of Clinical & Diagnostic Research, 18(7), DC20–DC24. https://doi.org/10.7860/JCDR/2024/69730.19668
Duan, N., Du, J., Huang, C., & Li, H. (2020). Microbial distribution and antibiotic susceptibility of lower respiratory tract infections patients from pediatric ward, adult respiratory ward, and respiratory intensive care unit. Frontiers in Microbiology, 11, Article 1480. https://doi.org/10.3389/fmicb.2020.01480
El-Badawy, M. F., Tawakol, W. M., El-Far, S. W., Maghrabi, I. A., Al-Ghamdi, S. A., Mansy, M. S., Ashour, M. S., & Shohayeb, M. M. (2017). Molecular identification of aminoglycoside-modifying enzymes and plasmid-mediated quinolone resistance genes among Klebsiella pneumoniae clinical isolates recovered from Egyptian patients. International Journal of Microbiology, 2017, 8050432. https://doi.org/10.1155/2017/8050432
Elbrolosy, A., Eissa, N., Al-Rajhy, N., El-Mahdy, E., & Mostafa, R. (2020). MrkD gene as a regulator of biofilm formation with correlation to antibiotic resistance among clinical Klebsiella pneumoniae isolates from Menoufia University Hospitals. Egyptian Journal of Medical Microbiology, 29(3), 137–144. https://doi.org/10.51429/EJMM29318
Granier, S. A., Plaisance, L., Leflon-Guibout, V., Lagier, E., Morand, S., Goldstein, F. W., & Nicolas-Chanoine, M. H. (2003). Recognition of two genetic groups in the Klebsiella oxytoca taxon on the basis of chromosomal beta-lactamase and housekeeping gene sequences as well as ERIC-1R PCR typing. International Journal of Systematic and Evolutionary Microbiology, 53(Pt 3), 661–668. https://doi.org/10.1099/ijs.0.02408-0
Hashimoto, J. G., Stevenson, B. S., & Schmidt, T. M. (2003). Rates and consequences of recombination between rRNA operons. Journal of Bacteriology, 185(3), 966–972. https://doi.org/10.1128/JB.185.3.966-972.2003
He, Y., Guo, X., Xiang, S., Li, J., Li, X., Xiang, H., He, J., Chen, D., & Chen, J. (2016). Comparative analyses of phenotypic methods and 16S rRNA, khe, rpoB genes sequencing for identification of clinical isolates of Klebsiella pneumoniae. Antonie van Leeuwenhoek, 109(7), 1029–1040. https://doi.org/10.1007/s10482-016-0702-9
Highsmith, A. K., & Jarvis, W. R. (1985). Klebsiella pneumoniae: Selected virulence factors that contribute to pathogenicity. Infection Control, 6(2), 75–77. https://doi.org/10.1017/s0195941700062640
Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey's manual of determinative bacteriology (9th ed., pp. 786–788). Williams & Wilkins. Baltimore, 786-788. https://www.scirp.org/reference/referencespapers?referenceid=1838672
Ibrahim, M. E. (2018). High antimicrobial resistant rates among Gram-negative pathogens in intensive care units: A retrospective study at a tertiary care hospital in Southwest Saudi Arabia. Saudi Medical Journal, 39(10), 1035–1043. https://doi.org/10.15537/smj.2018.10.22944
Jalal, N. A., Al-Ghamdi, A. M., Momenah, A. M., Ashgar, S. S., Bantun, F., Bahwerth, F. S., Hariri, S. H., Johargy, A. K., Barhameen, A. A., Al-Said, H. M., & Faidah, H. (2023). Prevalence and antibiogram pattern of Klebsiella pneumoniae in a tertiary care hospital in Makkah, Saudi Arabia: An 11-year experience. Antibiotics, 12(1), 164. https://doi.org/10.3390/antibiotics12010164
Kaseb, Z., Hassanzadeh, S., Mehri, A., Khosravi, M., Ganjloo, S., & Ghazvini, K. (2023). The prevalence of respiratory tract infections in the Ghaem Hospital of Mashhad. African Journal of Biotechnology Research, 15(2), 31–35. https://academicjournals.org/journal/JBR/article-abstract/5C3A8A770925
Kawai, T. (2006). Hypermucoviscosity: An extremely sticky phenotype of Klebsiella pneumoniae associated with emerging destructive tissue abscess syndrome. Clinical Infectious Diseases, 42(10), 1359–1361. https://doi.org/10.1086/503429
Kot, B., Piechota, M., Szweda, P., Mitrus, J., Wicha, J., Grużewska, A., & Witeska, M. (2023). Virulence analysis and antibiotic resistance of Klebsiella pneumoniae isolates from hospitalised patients in Poland. Scientific Reports, 13, 4448. https://doi.org/10.1038/s41598-023-31086-w
Lau, H. Y. F. (2007). Identification of Endogenous Mechanisms That Affect Klebsiella pneumoniae Growth in the Murine Host (Doctoral dissertation). A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Microbiology and Immunology) in the University of Michigan 2007.
Lin, T. L., Yang, F. L., Yang, A. S., Peng, H. P., Li, T. L., Tsai, M. D., Wu, S. H., & Wang, J. T. (2012). Amino acid substitutions of MagA in Klebsiella pneumoniae affect the biosynthesis of the capsular polysaccharide. PLoS ONE, 7(10), e46783. https://doi.org/10.1371/journal.pone.0046783
Liu, C., Shi, J., & Guo, J. (2018). High prevalence of hypervirulent Klebsiella pneumoniae infection in the genetic background of elderly patients in two teaching hospitals in China. Infection and Drug Resistance, 11, 1031–1041. https://doi.org/10.2147/IDR.S161075
Madhi, K. S., Jasim, A. S., Nasear, H. A., Ibraheim, H. K., & Gharban, H. A. J. (2024). Phylogenetic analysis of Klebsiella pneumoniae isolates of respiratory tract infections in humans and sheep. Open Veterinary Journal, 14(9), 2325–2333. https://doi.org/10.5455/OVJ.2024.v14.i9.21
Mahon, C. R., & Lehman, D. C. (2022). Textbook of diagnostic microbiology (7th ed.). Elsevier.
Maraki, S., Mavromanolaki, V. E., Kasimati, A., Iliaki-Giannakoudaki, E., & Stafylaki, D. (2024). Prevalence and antimicrobial resistance trends among lower respiratory tract pathogens in Crete, Greece, 2017–2022. Infection & Chemotherapy, 56(4), 492–501. https://doi.org/10.3947/ic.2024.0060
Mohammadabadi, M. (2016). Inter-simple sequence repeat loci associations with predicted breeding values of body weight in kermani sheep. Genetics in the Third Millennium, 14(4), 4386-4393. https://sciexplore.ir/Documents/Details/472-591-539-924
Mohammadabadi, M. and Asadollahpour Nanaei, H. (2021). Leptin gene expression in Raini Cashmere goat using Real Time PCR. Agricultural Biotechnology Journal, 13(1), 197-214. https://doi.org/10.22103/jab.2021.17334.1305
Mohammadabadi, M., Afsharmanesh, M., Khezri, A., Kheyrodin, H., Babenko Ivanivna, O., Borshch, O., Kalashnyk, O., Nechyporenko, О., Afanasenko, V., Slynko, V. and Usenko, S. (2025). Effect of Mealworm on GBP4L Gene Expression in the Spleen Tissue of Ross Broiler Chickens. Agricultural Biotechnology Journal, 17(2), 343-360. doi: 10.22103/jab.2025.25277.1714
Mohammadabadi, M., Akhtarpoor, A., Khezri, A., Babenko, O., Stavetska, R. V., Tytarenko, I., Ievstafiieva, Y., Buchkovska, V., Slynko, V. and Afanasenko, V. (2024a). The role and diverse applications of machine learning in genetics, breeding, and biotechnology of livestock and poultry. Agricultural Biotechnology Journal, 16(4), 413-442. https://doi.org/10.22103/jab.2025.24662.1644
Mohammadabadi, M., Babenko Ivanivna, O., Borshch, O., Kalashnyk, O., Ievstafiieva, Y. and Buchkovska, V. (2024c). Measuring the relative expression pattern of the UCP2 gene in different tissues of the Raini Cashmere goat. Agricultural Biotechnology Journal, 16(3), 317-332. https://doi.org/10.22103/jab.2024.24337.1627
Mohammadabadi, M., Kheyrodin, H., Afanasenko, V., Babenko Ivanivna, O., Klopenko, N., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024b). The role of artificial intelligence in genomics. Agricultural Biotechnology Journal, 16(2), 195-279. https://doi.org/10.22103/jab.2024.23558.1575
Mohammadinejad, F., Mohammadabadi, M., Roudbari, Z., & Sadkowski, T. (2022). Identification of Key Genes and Biological Pathways Associated with Skeletal Muscle Maturation and Hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals, 12(24), 3471. https://doi.org/10.3390/ani12243471
Mousavizadeh, A., Mohammad Abadi, M., Torabi, A., Nassiry, M. R., Ghiasi, H. and AliEsmailizadeh Koshkoieh, A. (2009). Genetic Polymorphism at the Growth Hormone Locus in Iranian Talli Goats by Polymerase Chain Reaction-Single Strand Conformation Polymorphism (PCR-SSCP). Iranian Journal of Biotechnology, 7(1), 51-53. https://www.ijbiotech.com/article_7064.html
Park, J. S., Hong, K. H., Lee, H. J., Choi, S. H., Song, S. H., Song, K. H., Kim, H. B., Park, K. U., Song, J., & Kim, E. C. (2011). Evaluation of three phenotypic identification systems for clinical isolates of Raoultella ornithinolytica. Journal of Medical Microbiology, 60(Pt 4), 492–499. https://doi.org/10.1099/jmm.0.020768-0
Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews, 11(4), 589–603. https://doi.org/10.1128/CMR.11.4.589
Prastiyanto, M., Rahmah, A., Punjungsari, T., Harianie, L., Rukmana, R., & Chairunnisa, A. (2024). Prevalence of multi-drug-resistant bacteria from sputum isolates of respiratory infections from Indonesian pneumonia patients. Microbes and Infectious Diseases. Advance online publication. https://doi.org/10.21608/mid.2024.341022.2377
Rahimi, B., & Vesal, A. (2017). Prevalence study of multi-drug resistant klebsiella pneumoniae strains isolated from respiratory tract infections. Journal of Pure and Applied Microbiology, 11(1), 181-186. https://doi.org/10.22207/JPAM.11.1.23
Rivero, A., Gomez, E., Alland, D., Huang, D. B., & Chiang, T. (2010). K2 serotype Klebsiella pneumoniae causing a liver abscess associated with infective endocarditis. Journal of Clinical Microbiology, 48(2), 639–641. https://doi.org/10.1128/JCM.01779-09
Russo, T. A., & Marr, C. M. (2019). Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews, 32(3), e00001-19. https://doi.org/10.1128/CMR.00001-19
Sandegren, L., Linkevicius, M., Lytsy, B., Melhus, Å., & Andersson, D. I. (2012). Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. Journal of Antimicrobial Chemotherapy, 67(1), 74–83. https://doi.org/10.1093/jac/dkr405
Santella, B., Serretiello, E., De Filippis, A., Veronica, F., Iervolino, D., Dell'Annunziata, F., Manente, R., Valitutti, F., Santoro, E., Pagliano, P., Galdiero, M., Boccia, G., & Franci, G. (2021). Lower respiratory tract pathogens and their antimicrobial susceptibility pattern: A 5-year study. Antibiotics, 10(7), 851. https://doi.org/10.3390/antibiotics10070851
Shahsavari, M., Mohammadabadi, M., Khezri, A., Asadi Fozi, M., Babenko, O., Kalashnyk, O., Oleshko, V., & Tkachenko, S. (2023). Correlation between insulin-like growth factor 1 gene expression and fennel (Foeniculum vulgare) seed powder consumption in muscle of sheep. Animal Biotechnology, 34(4), 882–892. https://doi.org/10.1080/10495398.2021.2000997
Sulimova, G. E., Azari, M. A., Rostamzadeh, J., Mohammad Abadi M.R., & Lazebny O.E. (2007). κ-casein gene (CSN3) allelic polymorphism in Russian cattle breeds and its information value as a genetic marker. Russian Journal of Genetics 43, 73–79. https://doi.org/10.1134/S1022795407010115
Turton, J. F., Perry, C., Elgohari, S., & Hampton, C. V. (2010). PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. Journal of Medical Microbiology, 59(5), 541–547. https://doi.org/10.1099/jmm.0.015198-0
WHO (2024). Antimicrobial Resistance, Hypervirulent Klebsiella pneumoniae - Global situation. https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON527
Zamani, A., Yousefi Mashouf, R., Ebrahimzadeh Namvar, A. M., & Alikhani, M. Y. (2013). Detection of magA gene in Klebsiella spp. isolated from clinical samples. Iranian Journal of Basic Medical Sciences, 16(2), 173–176. https://pubmed.ncbi.nlm.nih.gov/24298386/
Zar, H. J., MacGinty, R., Workman, L., Burd, T., Smith, G., Myer, L., Häggström, J., & Nicol, M. P. (2022). Klebsiella pneumoniae lower respiratory tract infection in a South African birth cohort: A longitudinal study. International Journal of Infectious Diseases, 121, 31–38. https://doi.org/10.1016/j.ijid.2022.04.043
Zhang, Y., Zhao, C., Wang, Q., Wang, X., Chen, H., Li, H., Zhang, F., Li, S., Wang, R., & Wang, H. (2016). High prevalence of hypervirulent Klebsiella pneumoniae infection in China: Geographic distribution, clinical characteristics, and antimicrobial resistance. Antimicrobial Agents and Chemotherapy, 60(10), 6115–6120. https://doi.org/10.1128/AAC.01127-16